Spaces:
Runtime error
Runtime error
danushkhanna
commited on
Commit
·
d9bdf5f
1
Parent(s):
8675d60
Create ineuron_interface.py
Browse files- ineuron_interface.py +60 -0
ineuron_interface.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pickle
|
3 |
+
import pandas as pd
|
4 |
+
from extract_features import ExtractFeatures
|
5 |
+
|
6 |
+
@st.cache_resource
|
7 |
+
def get_model():
|
8 |
+
"""
|
9 |
+
Loads the phishing URL detection model from a pickle file.
|
10 |
+
|
11 |
+
This function reads and loads a pickled file containing the classifier.
|
12 |
+
|
13 |
+
Returns:
|
14 |
+
object: The loaded phishing URL detection model.
|
15 |
+
|
16 |
+
Note:
|
17 |
+
The model should be saved in a file named 'phishing_url_detector.pkl'.
|
18 |
+
XGBoost module must be installed before using the file.
|
19 |
+
"""
|
20 |
+
with open('phishing_url_detector.pkl', 'rb') as pickle_model:
|
21 |
+
phishing_url_detector = pickle.load(pickle_model)
|
22 |
+
return phishing_url_detector
|
23 |
+
|
24 |
+
st.title("Phishing Website Detector")
|
25 |
+
st.header("Are you sure your 'bank' sent that link?")
|
26 |
+
|
27 |
+
# Takes in user input
|
28 |
+
input_url = st.text_area("Put in your sus site link here: ")
|
29 |
+
|
30 |
+
if input_url != "":
|
31 |
+
|
32 |
+
# Extracts features from the URL and converts it into a dataframe
|
33 |
+
features_url = ExtractFeatures().url_to_features(url=input_url)
|
34 |
+
features_dataframe = pd.DataFrame.from_dict([features_url])
|
35 |
+
features_dataframe = features_dataframe.fillna(-1)
|
36 |
+
features_dataframe = features_dataframe.astype(int)
|
37 |
+
|
38 |
+
st.write("Okay!")
|
39 |
+
st.cache_data.clear()
|
40 |
+
prediction_str = ""
|
41 |
+
|
42 |
+
# Predict outcome using extracted features
|
43 |
+
try:
|
44 |
+
phishing_url_detector = get_model()
|
45 |
+
prediction = phishing_url_detector.predict(features_dataframe)
|
46 |
+
if prediction == int(True):
|
47 |
+
prediction_str = 'Phishing Website. Do not click!'
|
48 |
+
elif prediction == int(False):
|
49 |
+
prediction_str = 'Not Phishing Website, stay safe!'
|
50 |
+
else:
|
51 |
+
prediction_str = ''
|
52 |
+
st.write(prediction_str)
|
53 |
+
st.write(features_dataframe)
|
54 |
+
|
55 |
+
except Exception as e:
|
56 |
+
print(e)
|
57 |
+
st.error("Not sure, what went wrong. We'll get back to you shortly!")
|
58 |
+
|
59 |
+
else:
|
60 |
+
st.write("")
|