|
import os, math |
|
import torch |
|
import torch.nn.functional as F |
|
import pytorch_lightning as pl |
|
|
|
from main import instantiate_from_config |
|
from taming.modules.util import SOSProvider |
|
|
|
|
|
def disabled_train(self, mode=True): |
|
"""Overwrite model.train with this function to make sure train/eval mode |
|
does not change anymore.""" |
|
return self |
|
|
|
|
|
class Net2NetTransformer(pl.LightningModule): |
|
def __init__(self, |
|
transformer_config, |
|
first_stage_config, |
|
cond_stage_config, |
|
permuter_config=None, |
|
ckpt_path=None, |
|
ignore_keys=[], |
|
first_stage_key="image", |
|
cond_stage_key="depth", |
|
downsample_cond_size=-1, |
|
pkeep=1.0, |
|
sos_token=0, |
|
unconditional=False, |
|
): |
|
super().__init__() |
|
self.be_unconditional = unconditional |
|
self.sos_token = sos_token |
|
self.first_stage_key = first_stage_key |
|
self.cond_stage_key = cond_stage_key |
|
self.init_first_stage_from_ckpt(first_stage_config) |
|
self.init_cond_stage_from_ckpt(cond_stage_config) |
|
if permuter_config is None: |
|
permuter_config = {"target": "taming.modules.transformer.permuter.Identity"} |
|
self.permuter = instantiate_from_config(config=permuter_config) |
|
self.transformer = instantiate_from_config(config=transformer_config) |
|
|
|
if ckpt_path is not None: |
|
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys) |
|
self.downsample_cond_size = downsample_cond_size |
|
self.pkeep = pkeep |
|
|
|
def init_from_ckpt(self, path, ignore_keys=list()): |
|
sd = torch.load(path, map_location="cpu")["state_dict"] |
|
for k in sd.keys(): |
|
for ik in ignore_keys: |
|
if k.startswith(ik): |
|
self.print("Deleting key {} from state_dict.".format(k)) |
|
del sd[k] |
|
self.load_state_dict(sd, strict=False) |
|
print(f"Restored from {path}") |
|
|
|
def init_first_stage_from_ckpt(self, config): |
|
model = instantiate_from_config(config) |
|
model = model.eval() |
|
model.train = disabled_train |
|
self.first_stage_model = model |
|
|
|
def init_cond_stage_from_ckpt(self, config): |
|
if config == "__is_first_stage__": |
|
print("Using first stage also as cond stage.") |
|
self.cond_stage_model = self.first_stage_model |
|
elif config == "__is_unconditional__" or self.be_unconditional: |
|
print(f"Using no cond stage. Assuming the training is intended to be unconditional. " |
|
f"Prepending {self.sos_token} as a sos token.") |
|
self.be_unconditional = True |
|
self.cond_stage_key = self.first_stage_key |
|
self.cond_stage_model = SOSProvider(self.sos_token) |
|
else: |
|
model = instantiate_from_config(config) |
|
model = model.eval() |
|
model.train = disabled_train |
|
self.cond_stage_model = model |
|
|
|
def forward(self, x, c): |
|
|
|
_, z_indices = self.encode_to_z(x) |
|
_, c_indices = self.encode_to_c(c) |
|
|
|
if self.training and self.pkeep < 1.0: |
|
mask = torch.bernoulli(self.pkeep*torch.ones(z_indices.shape, |
|
device=z_indices.device)) |
|
mask = mask.round().to(dtype=torch.int64) |
|
r_indices = torch.randint_like(z_indices, self.transformer.config.vocab_size) |
|
a_indices = mask*z_indices+(1-mask)*r_indices |
|
else: |
|
a_indices = z_indices |
|
|
|
cz_indices = torch.cat((c_indices, a_indices), dim=1) |
|
|
|
|
|
|
|
target = z_indices |
|
|
|
logits, _ = self.transformer(cz_indices[:, :-1]) |
|
|
|
logits = logits[:, c_indices.shape[1]-1:] |
|
|
|
return logits, target |
|
|
|
def top_k_logits(self, logits, k): |
|
v, ix = torch.topk(logits, k) |
|
out = logits.clone() |
|
out[out < v[..., [-1]]] = -float('Inf') |
|
return out |
|
|
|
@torch.no_grad() |
|
def sample(self, x, c, steps, temperature=1.0, sample=False, top_k=None, |
|
callback=lambda k: None): |
|
x = torch.cat((c,x),dim=1) |
|
block_size = self.transformer.get_block_size() |
|
assert not self.transformer.training |
|
if self.pkeep <= 0.0: |
|
|
|
assert len(x.shape)==2 |
|
noise_shape = (x.shape[0], steps-1) |
|
|
|
noise = c.clone()[:,x.shape[1]-c.shape[1]:-1] |
|
x = torch.cat((x,noise),dim=1) |
|
logits, _ = self.transformer(x) |
|
|
|
logits = logits / temperature |
|
|
|
if top_k is not None: |
|
logits = self.top_k_logits(logits, top_k) |
|
|
|
probs = F.softmax(logits, dim=-1) |
|
|
|
if sample: |
|
shape = probs.shape |
|
probs = probs.reshape(shape[0]*shape[1],shape[2]) |
|
ix = torch.multinomial(probs, num_samples=1) |
|
probs = probs.reshape(shape[0],shape[1],shape[2]) |
|
ix = ix.reshape(shape[0],shape[1]) |
|
else: |
|
_, ix = torch.topk(probs, k=1, dim=-1) |
|
|
|
x = ix[:, c.shape[1]-1:] |
|
else: |
|
for k in range(steps): |
|
callback(k) |
|
assert x.size(1) <= block_size |
|
x_cond = x if x.size(1) <= block_size else x[:, -block_size:] |
|
logits, _ = self.transformer(x_cond) |
|
|
|
logits = logits[:, -1, :] / temperature |
|
|
|
if top_k is not None: |
|
logits = self.top_k_logits(logits, top_k) |
|
|
|
probs = F.softmax(logits, dim=-1) |
|
|
|
if sample: |
|
ix = torch.multinomial(probs, num_samples=1) |
|
else: |
|
_, ix = torch.topk(probs, k=1, dim=-1) |
|
|
|
x = torch.cat((x, ix), dim=1) |
|
|
|
x = x[:, c.shape[1]:] |
|
return x |
|
|
|
@torch.no_grad() |
|
def encode_to_z(self, x): |
|
quant_z, _, info = self.first_stage_model.encode(x) |
|
indices = info[2].view(quant_z.shape[0], -1) |
|
indices = self.permuter(indices) |
|
return quant_z, indices |
|
|
|
@torch.no_grad() |
|
def encode_to_c(self, c): |
|
if self.downsample_cond_size > -1: |
|
c = F.interpolate(c, size=(self.downsample_cond_size, self.downsample_cond_size)) |
|
quant_c, _, [_,_,indices] = self.cond_stage_model.encode(c) |
|
if len(indices.shape) > 2: |
|
indices = indices.view(c.shape[0], -1) |
|
return quant_c, indices |
|
|
|
@torch.no_grad() |
|
def decode_to_img(self, index, zshape): |
|
index = self.permuter(index, reverse=True) |
|
bhwc = (zshape[0],zshape[2],zshape[3],zshape[1]) |
|
quant_z = self.first_stage_model.quantize.get_codebook_entry( |
|
index.reshape(-1), shape=bhwc) |
|
x = self.first_stage_model.decode(quant_z) |
|
return x |
|
|
|
@torch.no_grad() |
|
def log_images(self, batch, temperature=None, top_k=None, callback=None, lr_interface=False, **kwargs): |
|
log = dict() |
|
|
|
N = 4 |
|
if lr_interface: |
|
x, c = self.get_xc(batch, N, diffuse=False, upsample_factor=8) |
|
else: |
|
x, c = self.get_xc(batch, N) |
|
x = x.to(device=self.device) |
|
c = c.to(device=self.device) |
|
|
|
quant_z, z_indices = self.encode_to_z(x) |
|
quant_c, c_indices = self.encode_to_c(c) |
|
|
|
|
|
z_start_indices = z_indices[:,:z_indices.shape[1]//2] |
|
index_sample = self.sample(z_start_indices, c_indices, |
|
steps=z_indices.shape[1]-z_start_indices.shape[1], |
|
temperature=temperature if temperature is not None else 1.0, |
|
sample=True, |
|
top_k=top_k if top_k is not None else 100, |
|
callback=callback if callback is not None else lambda k: None) |
|
x_sample = self.decode_to_img(index_sample, quant_z.shape) |
|
|
|
|
|
z_start_indices = z_indices[:, :0] |
|
index_sample = self.sample(z_start_indices, c_indices, |
|
steps=z_indices.shape[1], |
|
temperature=temperature if temperature is not None else 1.0, |
|
sample=True, |
|
top_k=top_k if top_k is not None else 100, |
|
callback=callback if callback is not None else lambda k: None) |
|
x_sample_nopix = self.decode_to_img(index_sample, quant_z.shape) |
|
|
|
|
|
z_start_indices = z_indices[:, :0] |
|
index_sample = self.sample(z_start_indices, c_indices, |
|
steps=z_indices.shape[1], |
|
sample=False, |
|
callback=callback if callback is not None else lambda k: None) |
|
x_sample_det = self.decode_to_img(index_sample, quant_z.shape) |
|
|
|
|
|
x_rec = self.decode_to_img(z_indices, quant_z.shape) |
|
|
|
log["inputs"] = x |
|
log["reconstructions"] = x_rec |
|
|
|
if self.cond_stage_key != "image": |
|
cond_rec = self.cond_stage_model.decode(quant_c) |
|
if self.cond_stage_key == "segmentation": |
|
|
|
num_classes = cond_rec.shape[1] |
|
|
|
c = torch.argmax(c, dim=1, keepdim=True) |
|
c = F.one_hot(c, num_classes=num_classes) |
|
c = c.squeeze(1).permute(0, 3, 1, 2).float() |
|
c = self.cond_stage_model.to_rgb(c) |
|
|
|
cond_rec = torch.argmax(cond_rec, dim=1, keepdim=True) |
|
cond_rec = F.one_hot(cond_rec, num_classes=num_classes) |
|
cond_rec = cond_rec.squeeze(1).permute(0, 3, 1, 2).float() |
|
cond_rec = self.cond_stage_model.to_rgb(cond_rec) |
|
log["conditioning_rec"] = cond_rec |
|
log["conditioning"] = c |
|
|
|
log["samples_half"] = x_sample |
|
log["samples_nopix"] = x_sample_nopix |
|
log["samples_det"] = x_sample_det |
|
return log |
|
|
|
def get_input(self, key, batch): |
|
x = batch[key] |
|
if len(x.shape) == 3: |
|
x = x[..., None] |
|
if len(x.shape) == 4: |
|
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format) |
|
if x.dtype == torch.double: |
|
x = x.float() |
|
return x |
|
|
|
def get_xc(self, batch, N=None): |
|
x = self.get_input(self.first_stage_key, batch) |
|
c = self.get_input(self.cond_stage_key, batch) |
|
if N is not None: |
|
x = x[:N] |
|
c = c[:N] |
|
return x, c |
|
|
|
def shared_step(self, batch, batch_idx): |
|
x, c = self.get_xc(batch) |
|
logits, target = self(x, c) |
|
loss = F.cross_entropy(logits.reshape(-1, logits.size(-1)), target.reshape(-1)) |
|
return loss |
|
|
|
def training_step(self, batch, batch_idx): |
|
loss = self.shared_step(batch, batch_idx) |
|
self.log("train/loss", loss, prog_bar=True, logger=True, on_step=True, on_epoch=True) |
|
return loss |
|
|
|
def validation_step(self, batch, batch_idx): |
|
loss = self.shared_step(batch, batch_idx) |
|
self.log("val/loss", loss, prog_bar=True, logger=True, on_step=True, on_epoch=True) |
|
return loss |
|
|
|
def configure_optimizers(self): |
|
""" |
|
Following minGPT: |
|
This long function is unfortunately doing something very simple and is being very defensive: |
|
We are separating out all parameters of the model into two buckets: those that will experience |
|
weight decay for regularization and those that won't (biases, and layernorm/embedding weights). |
|
We are then returning the PyTorch optimizer object. |
|
""" |
|
|
|
decay = set() |
|
no_decay = set() |
|
whitelist_weight_modules = (torch.nn.Linear, ) |
|
blacklist_weight_modules = (torch.nn.LayerNorm, torch.nn.Embedding) |
|
for mn, m in self.transformer.named_modules(): |
|
for pn, p in m.named_parameters(): |
|
fpn = '%s.%s' % (mn, pn) if mn else pn |
|
|
|
if pn.endswith('bias'): |
|
|
|
no_decay.add(fpn) |
|
elif pn.endswith('weight') and isinstance(m, whitelist_weight_modules): |
|
|
|
decay.add(fpn) |
|
elif pn.endswith('weight') and isinstance(m, blacklist_weight_modules): |
|
|
|
no_decay.add(fpn) |
|
|
|
|
|
no_decay.add('pos_emb') |
|
|
|
|
|
param_dict = {pn: p for pn, p in self.transformer.named_parameters()} |
|
inter_params = decay & no_decay |
|
union_params = decay | no_decay |
|
assert len(inter_params) == 0, "parameters %s made it into both decay/no_decay sets!" % (str(inter_params), ) |
|
assert len(param_dict.keys() - union_params) == 0, "parameters %s were not separated into either decay/no_decay set!" \ |
|
% (str(param_dict.keys() - union_params), ) |
|
|
|
|
|
optim_groups = [ |
|
{"params": [param_dict[pn] for pn in sorted(list(decay))], "weight_decay": 0.01}, |
|
{"params": [param_dict[pn] for pn in sorted(list(no_decay))], "weight_decay": 0.0}, |
|
] |
|
optimizer = torch.optim.AdamW(optim_groups, lr=self.learning_rate, betas=(0.9, 0.95)) |
|
return optimizer |
|
|