|
import os |
|
import numpy as np |
|
import cv2 |
|
import albumentations |
|
from PIL import Image |
|
from torch.utils.data import Dataset |
|
|
|
|
|
class SegmentationBase(Dataset): |
|
def __init__(self, |
|
data_csv, data_root, segmentation_root, |
|
size=None, random_crop=False, interpolation="bicubic", |
|
n_labels=182, shift_segmentation=False, |
|
): |
|
self.n_labels = n_labels |
|
self.shift_segmentation = shift_segmentation |
|
self.data_csv = data_csv |
|
self.data_root = data_root |
|
self.segmentation_root = segmentation_root |
|
with open(self.data_csv, "r") as f: |
|
self.image_paths = f.read().splitlines() |
|
self._length = len(self.image_paths) |
|
self.labels = { |
|
"relative_file_path_": [l for l in self.image_paths], |
|
"file_path_": [os.path.join(self.data_root, l) |
|
for l in self.image_paths], |
|
"segmentation_path_": [os.path.join(self.segmentation_root, l.replace(".jpg", ".png")) |
|
for l in self.image_paths] |
|
} |
|
|
|
size = None if size is not None and size<=0 else size |
|
self.size = size |
|
if self.size is not None: |
|
self.interpolation = interpolation |
|
self.interpolation = { |
|
"nearest": cv2.INTER_NEAREST, |
|
"bilinear": cv2.INTER_LINEAR, |
|
"bicubic": cv2.INTER_CUBIC, |
|
"area": cv2.INTER_AREA, |
|
"lanczos": cv2.INTER_LANCZOS4}[self.interpolation] |
|
self.image_rescaler = albumentations.SmallestMaxSize(max_size=self.size, |
|
interpolation=self.interpolation) |
|
self.segmentation_rescaler = albumentations.SmallestMaxSize(max_size=self.size, |
|
interpolation=cv2.INTER_NEAREST) |
|
self.center_crop = not random_crop |
|
if self.center_crop: |
|
self.cropper = albumentations.CenterCrop(height=self.size, width=self.size) |
|
else: |
|
self.cropper = albumentations.RandomCrop(height=self.size, width=self.size) |
|
self.preprocessor = self.cropper |
|
|
|
def __len__(self): |
|
return self._length |
|
|
|
def __getitem__(self, i): |
|
example = dict((k, self.labels[k][i]) for k in self.labels) |
|
image = Image.open(example["file_path_"]) |
|
if not image.mode == "RGB": |
|
image = image.convert("RGB") |
|
image = np.array(image).astype(np.uint8) |
|
if self.size is not None: |
|
image = self.image_rescaler(image=image)["image"] |
|
segmentation = Image.open(example["segmentation_path_"]) |
|
assert segmentation.mode == "L", segmentation.mode |
|
segmentation = np.array(segmentation).astype(np.uint8) |
|
if self.shift_segmentation: |
|
|
|
segmentation = segmentation+1 |
|
if self.size is not None: |
|
segmentation = self.segmentation_rescaler(image=segmentation)["image"] |
|
if self.size is not None: |
|
processed = self.preprocessor(image=image, |
|
mask=segmentation |
|
) |
|
else: |
|
processed = {"image": image, |
|
"mask": segmentation |
|
} |
|
example["image"] = (processed["image"]/127.5 - 1.0).astype(np.float32) |
|
segmentation = processed["mask"] |
|
onehot = np.eye(self.n_labels)[segmentation] |
|
example["segmentation"] = onehot |
|
return example |
|
|
|
|
|
class Examples(SegmentationBase): |
|
def __init__(self, size=None, random_crop=False, interpolation="bicubic"): |
|
super().__init__(data_csv="data/sflckr_examples.txt", |
|
data_root="data/sflckr_images", |
|
segmentation_root="data/sflckr_segmentations", |
|
size=size, random_crop=random_crop, interpolation=interpolation) |
|
|