|
import os |
|
import json |
|
import albumentations |
|
import numpy as np |
|
from PIL import Image |
|
from tqdm import tqdm |
|
from torch.utils.data import Dataset |
|
|
|
from taming.data.sflckr import SegmentationBase |
|
|
|
|
|
class Examples(SegmentationBase): |
|
def __init__(self, size=256, random_crop=False, interpolation="bicubic"): |
|
super().__init__(data_csv="data/coco_examples.txt", |
|
data_root="data/coco_images", |
|
segmentation_root="data/coco_segmentations", |
|
size=size, random_crop=random_crop, |
|
interpolation=interpolation, |
|
n_labels=183, shift_segmentation=True) |
|
|
|
|
|
class CocoBase(Dataset): |
|
"""needed for (image, caption, segmentation) pairs""" |
|
def __init__(self, size=None, dataroot="", datajson="", onehot_segmentation=False, use_stuffthing=False, |
|
crop_size=None, force_no_crop=False, given_files=None): |
|
self.split = self.get_split() |
|
self.size = size |
|
if crop_size is None: |
|
self.crop_size = size |
|
else: |
|
self.crop_size = crop_size |
|
|
|
self.onehot = onehot_segmentation |
|
self.stuffthing = use_stuffthing |
|
if self.onehot and not self.stuffthing: |
|
raise NotImplemented("One hot mode is only supported for the " |
|
"stuffthings version because labels are stored " |
|
"a bit different.") |
|
|
|
data_json = datajson |
|
with open(data_json) as json_file: |
|
self.json_data = json.load(json_file) |
|
self.img_id_to_captions = dict() |
|
self.img_id_to_filepath = dict() |
|
self.img_id_to_segmentation_filepath = dict() |
|
|
|
assert data_json.split("/")[-1] in ["captions_train2017.json", |
|
"captions_val2017.json"] |
|
if self.stuffthing: |
|
self.segmentation_prefix = ( |
|
"data/cocostuffthings/val2017" if |
|
data_json.endswith("captions_val2017.json") else |
|
"data/cocostuffthings/train2017") |
|
else: |
|
self.segmentation_prefix = ( |
|
"data/coco/annotations/stuff_val2017_pixelmaps" if |
|
data_json.endswith("captions_val2017.json") else |
|
"data/coco/annotations/stuff_train2017_pixelmaps") |
|
|
|
imagedirs = self.json_data["images"] |
|
self.labels = {"image_ids": list()} |
|
for imgdir in tqdm(imagedirs, desc="ImgToPath"): |
|
self.img_id_to_filepath[imgdir["id"]] = os.path.join(dataroot, imgdir["file_name"]) |
|
self.img_id_to_captions[imgdir["id"]] = list() |
|
pngfilename = imgdir["file_name"].replace("jpg", "png") |
|
self.img_id_to_segmentation_filepath[imgdir["id"]] = os.path.join( |
|
self.segmentation_prefix, pngfilename) |
|
if given_files is not None: |
|
if pngfilename in given_files: |
|
self.labels["image_ids"].append(imgdir["id"]) |
|
else: |
|
self.labels["image_ids"].append(imgdir["id"]) |
|
|
|
capdirs = self.json_data["annotations"] |
|
for capdir in tqdm(capdirs, desc="ImgToCaptions"): |
|
|
|
self.img_id_to_captions[capdir["image_id"]].append(np.array([capdir["caption"]])) |
|
|
|
self.rescaler = albumentations.SmallestMaxSize(max_size=self.size) |
|
if self.split=="validation": |
|
self.cropper = albumentations.CenterCrop(height=self.crop_size, width=self.crop_size) |
|
else: |
|
self.cropper = albumentations.RandomCrop(height=self.crop_size, width=self.crop_size) |
|
self.preprocessor = albumentations.Compose( |
|
[self.rescaler, self.cropper], |
|
additional_targets={"segmentation": "image"}) |
|
if force_no_crop: |
|
self.rescaler = albumentations.Resize(height=self.size, width=self.size) |
|
self.preprocessor = albumentations.Compose( |
|
[self.rescaler], |
|
additional_targets={"segmentation": "image"}) |
|
|
|
def __len__(self): |
|
return len(self.labels["image_ids"]) |
|
|
|
def preprocess_image(self, image_path, segmentation_path): |
|
image = Image.open(image_path) |
|
if not image.mode == "RGB": |
|
image = image.convert("RGB") |
|
image = np.array(image).astype(np.uint8) |
|
|
|
segmentation = Image.open(segmentation_path) |
|
if not self.onehot and not segmentation.mode == "RGB": |
|
segmentation = segmentation.convert("RGB") |
|
segmentation = np.array(segmentation).astype(np.uint8) |
|
if self.onehot: |
|
assert self.stuffthing |
|
|
|
|
|
|
|
|
|
|
|
|
|
assert segmentation.dtype == np.uint8 |
|
segmentation = segmentation + 1 |
|
|
|
processed = self.preprocessor(image=image, segmentation=segmentation) |
|
image, segmentation = processed["image"], processed["segmentation"] |
|
image = (image / 127.5 - 1.0).astype(np.float32) |
|
|
|
if self.onehot: |
|
assert segmentation.dtype == np.uint8 |
|
|
|
n_labels = 183 |
|
flatseg = np.ravel(segmentation) |
|
onehot = np.zeros((flatseg.size, n_labels), dtype=np.bool) |
|
onehot[np.arange(flatseg.size), flatseg] = True |
|
onehot = onehot.reshape(segmentation.shape + (n_labels,)).astype(int) |
|
segmentation = onehot |
|
else: |
|
segmentation = (segmentation / 127.5 - 1.0).astype(np.float32) |
|
return image, segmentation |
|
|
|
def __getitem__(self, i): |
|
img_path = self.img_id_to_filepath[self.labels["image_ids"][i]] |
|
seg_path = self.img_id_to_segmentation_filepath[self.labels["image_ids"][i]] |
|
image, segmentation = self.preprocess_image(img_path, seg_path) |
|
captions = self.img_id_to_captions[self.labels["image_ids"][i]] |
|
|
|
caption = captions[np.random.randint(0, len(captions))] |
|
example = {"image": image, |
|
"caption": [str(caption[0])], |
|
"segmentation": segmentation, |
|
"img_path": img_path, |
|
"seg_path": seg_path, |
|
"filename_": img_path.split(os.sep)[-1] |
|
} |
|
return example |
|
|
|
|
|
class CocoImagesAndCaptionsTrain(CocoBase): |
|
"""returns a pair of (image, caption)""" |
|
def __init__(self, size, onehot_segmentation=False, use_stuffthing=False, crop_size=None, force_no_crop=False): |
|
super().__init__(size=size, |
|
dataroot="data/coco/train2017", |
|
datajson="data/coco/annotations/captions_train2017.json", |
|
onehot_segmentation=onehot_segmentation, |
|
use_stuffthing=use_stuffthing, crop_size=crop_size, force_no_crop=force_no_crop) |
|
|
|
def get_split(self): |
|
return "train" |
|
|
|
|
|
class CocoImagesAndCaptionsValidation(CocoBase): |
|
"""returns a pair of (image, caption)""" |
|
def __init__(self, size, onehot_segmentation=False, use_stuffthing=False, crop_size=None, force_no_crop=False, |
|
given_files=None): |
|
super().__init__(size=size, |
|
dataroot="data/coco/val2017", |
|
datajson="data/coco/annotations/captions_val2017.json", |
|
onehot_segmentation=onehot_segmentation, |
|
use_stuffthing=use_stuffthing, crop_size=crop_size, force_no_crop=force_no_crop, |
|
given_files=given_files) |
|
|
|
def get_split(self): |
|
return "validation" |
|
|