|
import numpy as np |
|
import pytest |
|
import torch |
|
from PIL import Image |
|
|
|
import clip |
|
|
|
|
|
@pytest.mark.parametrize('model_name', clip.available_models()) |
|
def test_consistency(model_name): |
|
device = "cpu" |
|
jit_model, transform = clip.load(model_name, device=device, jit=True) |
|
py_model, _ = clip.load(model_name, device=device, jit=False) |
|
|
|
image = transform(Image.open("CLIP.png")).unsqueeze(0).to(device) |
|
text = clip.tokenize(["a diagram", "a dog", "a cat"]).to(device) |
|
|
|
with torch.no_grad(): |
|
logits_per_image, _ = jit_model(image, text) |
|
jit_probs = logits_per_image.softmax(dim=-1).cpu().numpy() |
|
|
|
logits_per_image, _ = py_model(image, text) |
|
py_probs = logits_per_image.softmax(dim=-1).cpu().numpy() |
|
|
|
assert np.allclose(jit_probs, py_probs, atol=0.01, rtol=0.1) |
|
|