File size: 4,640 Bytes
d4bc11a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
import os
import numpy as np
import albumentations
from torch.utils.data import Dataset
from taming.data.base import ImagePaths, NumpyPaths, ConcatDatasetWithIndex
class FacesBase(Dataset):
def __init__(self, *args, **kwargs):
super().__init__()
self.data = None
self.keys = None
def __len__(self):
return len(self.data)
def __getitem__(self, i):
example = self.data[i]
ex = {}
if self.keys is not None:
for k in self.keys:
ex[k] = example[k]
else:
ex = example
return ex
class CelebAHQTrain(FacesBase):
def __init__(self, size, keys=None):
super().__init__()
root = "data/celebahq"
with open("data/celebahqtrain.txt", "r") as f:
relpaths = f.read().splitlines()
paths = [os.path.join(root, relpath) for relpath in relpaths]
self.data = NumpyPaths(paths=paths, size=size, random_crop=False)
self.keys = keys
class CelebAHQValidation(FacesBase):
def __init__(self, size, keys=None):
super().__init__()
root = "data/celebahq"
with open("data/celebahqvalidation.txt", "r") as f:
relpaths = f.read().splitlines()
paths = [os.path.join(root, relpath) for relpath in relpaths]
self.data = NumpyPaths(paths=paths, size=size, random_crop=False)
self.keys = keys
class FFHQTrain(FacesBase):
def __init__(self, size, keys=None):
super().__init__()
root = "data/ffhq"
with open("data/ffhqtrain.txt", "r") as f:
relpaths = f.read().splitlines()
paths = [os.path.join(root, relpath) for relpath in relpaths]
self.data = ImagePaths(paths=paths, size=size, random_crop=False)
self.keys = keys
class FFHQValidation(FacesBase):
def __init__(self, size, keys=None):
super().__init__()
root = "data/ffhq"
with open("data/ffhqvalidation.txt", "r") as f:
relpaths = f.read().splitlines()
paths = [os.path.join(root, relpath) for relpath in relpaths]
self.data = ImagePaths(paths=paths, size=size, random_crop=False)
self.keys = keys
class FacesHQTrain(Dataset):
# CelebAHQ [0] + FFHQ [1]
def __init__(self, size, keys=None, crop_size=None, coord=False):
d1 = CelebAHQTrain(size=size, keys=keys)
d2 = FFHQTrain(size=size, keys=keys)
self.data = ConcatDatasetWithIndex([d1, d2])
self.coord = coord
if crop_size is not None:
self.cropper = albumentations.RandomCrop(height=crop_size,width=crop_size)
if self.coord:
self.cropper = albumentations.Compose([self.cropper],
additional_targets={"coord": "image"})
def __len__(self):
return len(self.data)
def __getitem__(self, i):
ex, y = self.data[i]
if hasattr(self, "cropper"):
if not self.coord:
out = self.cropper(image=ex["image"])
ex["image"] = out["image"]
else:
h,w,_ = ex["image"].shape
coord = np.arange(h*w).reshape(h,w,1)/(h*w)
out = self.cropper(image=ex["image"], coord=coord)
ex["image"] = out["image"]
ex["coord"] = out["coord"]
ex["class"] = y
return ex
class FacesHQValidation(Dataset):
# CelebAHQ [0] + FFHQ [1]
def __init__(self, size, keys=None, crop_size=None, coord=False):
d1 = CelebAHQValidation(size=size, keys=keys)
d2 = FFHQValidation(size=size, keys=keys)
self.data = ConcatDatasetWithIndex([d1, d2])
self.coord = coord
if crop_size is not None:
self.cropper = albumentations.CenterCrop(height=crop_size,width=crop_size)
if self.coord:
self.cropper = albumentations.Compose([self.cropper],
additional_targets={"coord": "image"})
def __len__(self):
return len(self.data)
def __getitem__(self, i):
ex, y = self.data[i]
if hasattr(self, "cropper"):
if not self.coord:
out = self.cropper(image=ex["image"])
ex["image"] = out["image"]
else:
h,w,_ = ex["image"].shape
coord = np.arange(h*w).reshape(h,w,1)/(h*w)
out = self.cropper(image=ex["image"], coord=coord)
ex["image"] = out["image"]
ex["coord"] = out["coord"]
ex["class"] = y
return ex
|