create app.py
Browse filesFirst version of the chat interface.
app.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
|
4 |
+
# Load the pre-trained LLM model and tokenizer
|
5 |
+
model_name = "microsoft/DialoGPT-medium"
|
6 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
|
9 |
+
# Define the function to generate the chatbot response
|
10 |
+
def chatbot(input_text):
|
11 |
+
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
12 |
+
output = model.generate(input_ids, max_length=1000, do_sample=True, top_p=0.92, top_k=0, num_return_sequences=1)
|
13 |
+
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
14 |
+
return response
|
15 |
+
|
16 |
+
# Create the Gradio interface
|
17 |
+
chat_interface = gr.Blocks()
|
18 |
+
|
19 |
+
with chat_interface:
|
20 |
+
gr.Markdown("# Chatbot")
|
21 |
+
chatbot_input = gr.Textbox(placeholder="Type your message here...")
|
22 |
+
chatbot_output = gr.Textbox(label="Chatbot Response")
|
23 |
+
chat_btn = gr.Button("Send")
|
24 |
+
chat_btn.click(chatbot, inputs=chatbot_input, outputs=chatbot_output)
|
25 |
+
|
26 |
+
chat_interface.launch()
|