File size: 8,323 Bytes
ce500ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import gradio as gr
import os
import sys
import traceback
import logging
import shutil
import ffmpeg

# Set up logging to a file for debugging
logging.basicConfig(
    filename="apps/gradio_app/debug.log",
    level=logging.DEBUG,
    format="%(asctime)s - %(levelname)s - %(message)s"
)

# Adjust sys.path to include the src directory
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..', 'src', 'license_plate_detector_ocr')))
from infer import infer, is_image_file

def convert_to_supported_format(input_path, output_path):
    """Convert video to a browser-compatible format (MP4 with H.264 codec)."""
    try:
        stream = ffmpeg.input(input_path)
        stream = ffmpeg.output(stream, output_path, vcodec='h264', acodec='aac', format='mp4', loglevel='quiet')
        ffmpeg.run(stream)
        logging.debug(f"Converted video to {output_path}")
        return output_path
    except Exception as e:
        logging.error(f"Error converting video {input_path}: {str(e)}")
        return None

def gradio_process(input_file, input_type):
    """Process the input file (image or video) for license plate detection and OCR."""
    try:
        logging.debug(f"Input file path: {input_file.name}")
        print(f"Input file path: {input_file.name}")
        
        # Copy input file to temp_data directory to ensure stability
        temp_input_dir = "apps/gradio_app/temp_data"
        os.makedirs(temp_input_dir, exist_ok=True)
        temp_input_path = os.path.join(temp_input_dir, os.path.basename(input_file.name))
        shutil.copy(input_file.name, temp_input_path)
        logging.debug(f"Copied input file to: {temp_input_path}")
        
        # Verify input file exists
        if not os.path.exists(temp_input_path):
            error_msg = f"Error: Input file {temp_input_path} does not exist."
            logging.error(error_msg)
            return None, None, error_msg, None, None
        
        # Set output path
        output_dir = "apps/gradio_app/temp_data"
        os.makedirs(output_dir, exist_ok=True)
        output_filename = os.path.splitext(os.path.basename(temp_input_path))[0] + ('_output.jpg' if is_image_file(temp_input_path) else '_output.mp4')
        output_path = os.path.join(output_dir, output_filename)
        logging.debug(f"Output path: {output_path}")
        
        # Call the infer function
        result_array, plate_texts = infer(temp_input_path, output_path)
        
        if result_array is None and is_image_file(temp_input_path):
            error_msg = f"Error: Processing failed for {temp_input_path}. 'infer' returned None."
            logging.error(error_msg)
            return None, None, error_msg, None, None
        
        # Validate output file for videos
        if not is_image_file(temp_input_path):
            if not os.path.exists(output_path):
                error_msg = f"Error: Output video file {output_path} was not created."
                logging.error(error_msg)
                return None, None, error_msg, None, None
            # Convert output video to supported format
            converted_output_path = os.path.join(output_dir, f"converted_{os.path.basename(output_path)}")
            converted_path = convert_to_supported_format(output_path, converted_output_path)
            if converted_path is None:
                error_msg = f"Error: Failed to convert output video {output_path} to supported format."
                logging.error(error_msg)
                return None, None, error_msg, None, None
            output_path = converted_path
        
        # Format plate texts
        if is_image_file(temp_input_path):
            formatted_texts = "\n".join(plate_texts) if plate_texts else "No plates detected"
            logging.debug(f"Image processed successfully. Plate texts: {formatted_texts}")
            return result_array, None, formatted_texts, temp_input_path, None
        else:
            formatted_texts = []
            for i, texts in enumerate(plate_texts):
                if texts:
                    formatted_texts.append(f"Frame {i+1}: {', '.join(texts)}")
            formatted_texts = "\n".join(formatted_texts) if formatted_texts else "No plates detected"
            logging.debug(f"Video processed successfully. Plate texts: {formatted_texts}")
            return None, output_path, formatted_texts, None, temp_input_path
    except Exception as e:
        error_message = f"Error processing {input_file.name}: {str(e)}\n{traceback.format_exc()}"
        logging.error(error_message)
        print(error_message)
        return None, None, error_message, None, None

def update_preview(file, input_type):
    """Return file path for the appropriate preview component based on input type."""
    if not file:
        logging.debug("No file provided for preview.")
        return None, None
    logging.debug(f"Updating preview for {input_type}: {file.name}")
    # Verify file exists
    if not os.path.exists(file.name):
        logging.error(f"Input file {file.name} does not exist.")
        return None, None
    # Check if video format is supported
    if input_type == "Video" and not file.name.lower().endswith(('.mp4', '.webm')):
        logging.error(f"Unsupported video format for {file.name}. Use MP4 or WebM.")
        return None, None
    return file.name if input_type == "Image" else None, file.name if input_type == "Video" else None

def update_visibility(input_type):
    """Update visibility of input/output components based on input type."""
    logging.debug(f"Updating visibility for input type: {input_type}")
    is_image = input_type == "Image"
    is_video = input_type == "Video"
    return (
        gr.update(visible=is_image),
        gr.update(visible=is_video),
        gr.update(visible=is_image),
        gr.update(visible=is_video)
    )

# Gradio Interface
with gr.Blocks() as iface:
    gr.Markdown(
        """

        # License Plate Detection and OCR

        Upload an image or video to detect and read license plates. Outputs are saved in `apps/gradio_app/temp_data/`.

        Debug logs are saved in `apps/gradio_app/debug.log`.

        """,
        elem_classes="markdown-title"
    )
    
    with gr.Row():
        with gr.Column(scale=1):
            input_file = gr.File(label="Upload Image or Video")
            input_type = gr.Radio(choices=["Image", "Video"], label="Input Type", value="Image")
            with gr.Blocks():
                input_preview_image = gr.Image(label="Input Preview", visible=True)
                input_preview_video = gr.Video(label="Input Preview", visible=False)
            with gr.Row():
                clear_button = gr.Button("Clear", variant="secondary")
                submit_button = gr.Button("Submit", variant="primary")
        with gr.Column(scale=2):
            with gr.Blocks():
                output_image = gr.Image(label="Processed Output (Image)", type="numpy", visible=True)
                output_video = gr.Video(label="Processed Output (Video)", visible=False)
            output_text = gr.Textbox(label="Detected License Plates", lines=10)

    # Update preview and output visibility when input type changes
    input_type.change(
        fn=update_visibility,
        inputs=input_type,
        outputs=[input_preview_image, input_preview_video, output_image, output_video]
    )

    # Update preview when file is uploaded
    input_file.change(
        fn=update_preview,
        inputs=[input_file, input_type],
        outputs=[input_preview_image, input_preview_video]
    )
    
    # Bind the processing function
    submit_button.click(
        fn=gradio_process,
        inputs=[input_file, input_type],
        outputs=[output_image, output_video, output_text, input_preview_image, input_preview_video]
    )
    
    # Clear button functionality
    clear_button.click(
        fn=lambda: (None, None, None, "Image", None, None, None, None),
        outputs=[input_file, output_image, output_video, input_type, input_preview_image, input_preview_video, output_image, output_video]
    )

if __name__ == "__main__":
    iface.launch(share=True)