danhtran2mind's picture
Upload 68 files
f56ede2 verified
raw
history blame
7.5 kB
import cv2
import torch
from PIL import Image
import numpy as np
import yaml
import argparse
from controlnet_aux import OpenposeDetector
from diffusers import (
StableDiffusionControlNetPipeline,
ControlNetModel,
UniPCMultistepScheduler
)
from utils.download import load_image
from utils.plot import image_grid
import os
from tqdm import tqdm
import re
import uuid
def load_config(config_path):
try:
with open(config_path, 'r') as file:
return yaml.safe_load(file)
except Exception as e:
raise ValueError(f"Error loading config file: {e}")
def initialize_controlnet(config):
model_id = config['model_id']
local_dir = config.get('local_dir', model_id)
return ControlNetModel.from_pretrained(
local_dir if local_dir != model_id else model_id,
torch_dtype=torch.float16
)
def initialize_pipeline(controlnet, config):
model_id = config['model_id']
local_dir = config.get('local_dir', model_id)
pipe = StableDiffusionControlNetPipeline.from_pretrained(
local_dir if local_dir != model_id else model_id,
controlnet=controlnet,
torch_dtype=torch.float16
)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
return pipe
def setup_device(pipe):
device = "cuda" if torch.cuda.is_available() else "cpu"
if device == "cuda":
pipe.enable_model_cpu_offload()
pipe.to(device)
return device
def generate_images(pipe, prompts, pose_images, generators, negative_prompts, num_steps, guidance_scale, controlnet_conditioning_scale, width, height):
return pipe(
prompts,
pose_images,
negative_prompt=negative_prompts,
generator=generators,
num_inference_steps=num_steps,
guidance_scale=guidance_scale,
controlnet_conditioning_scale=controlnet_conditioning_scale,
width=width,
height=height
).images
def infer(args):
# Load configuration
configs = load_config(args.config_path)
# Initialize models
controlnet_detector = OpenposeDetector.from_pretrained(
configs[2]['model_id'] # lllyasviel/ControlNet
)
controlnet = initialize_controlnet(configs[0])
pipe = initialize_pipeline(controlnet, configs[1])
# Setup device
device = setup_device(pipe)
# Load and process image
try:
if args.input_image:
demo_image = Image.open(args.input_image).convert("RGB")
elif args.image_url:
demo_image = load_image(args.image_url)
else:
raise ValueError("Either --input_image or --image_url must be provided")
except Exception as e:
raise ValueError(f"Error loading image: {e}")
poses = [controlnet_detector(demo_image)]
# Generate images
generators = [torch.Generator(device="cpu").manual_seed(args.seed + i) for i in range(len(poses))]
output_images = generate_images(
pipe,
[args.prompt] * len(generators),
poses,
generators,
[args.negative_prompt] * len(generators),
args.num_steps,
args.guidance_scale,
args.controlnet_conditioning_scale,
args.width,
args.height
)
# Save images if save_output is True
if args.save_output:
os.makedirs(args.output_dir, exist_ok=True)
for i, img in enumerate(tqdm(output_images, desc="Saving images")):
if args.use_prompt_as_output_name:
# Sanitize prompt for filename (replace spaces and special characters)
sanitized_prompt = re.sub(r'[^\w\s-]', '', args.prompt).replace(' ', '_').lower()
filename = f"{sanitized_prompt}_{i}.png"
else:
# Use UUID for filename
filename = f"{uuid.uuid4()}_{i}.png"
img.save(os.path.join(args.output_dir, filename))
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="ControlNet image generation with pose detection")
# Create mutually exclusive group for input_image and image_url
image_group = parser.add_mutually_exclusive_group(required=True)
image_group.add_argument("--input_image", type=str, default=None,
help="Path to local input image (default: tests/test_data/yoga1.jpg)")
image_group.add_argument("--image_url", type=str, default=None,
help="URL of input image (e.g., https://huggingface.co/datasets/YiYiXu/controlnet-testing/resolve/main/yoga1.jpeg)")
parser.add_argument("--config_path", type=str, default="configs/model_ckpts.yaml",
help="Path to configuration YAML file")
parser.add_argument("--prompt", type=str, default="a man is doing yoga",
help="Text prompt for image generation")
parser.add_argument("--negative_prompt", type=str,
default="monochrome, lowres, bad anatomy, worst quality, low quality",
help="Negative prompt for image generation")
parser.add_argument("--num_steps", type=int, default=20,
help="Number of inference steps")
parser.add_argument("--seed", type=int, default=2,
help="Random seed for generation")
parser.add_argument("--width", type=int, default=512,
help="Width of the generated image")
parser.add_argument("--height", type=int, default=512,
help="Height of the generated image")
parser.add_argument("--guidance_scale", type=float, default=7.5,
help="Guidance scale for prompt adherence")
parser.add_argument("--controlnet_conditioning_scale", type=float, default=1.0,
help="ControlNet conditioning scale")
parser.add_argument("--output_dir", type=str, default="tests/test_data",
help="Directory to save generated images")
parser.add_argument("--use_prompt_as_output_name", action="store_true",
help="Use prompt as part of output image filename")
parser.add_argument("--save_output", action="store_true artr",
help="Save generated images to output directory")
args = parser.parse_args()
infer(args)
# Using image_url
# python script.py \
# --config_path configs/model_ckpts.yaml \
# --image_url https://huggingface.co/datasets/YiYiXu/controlnet-testing/resolve/main/yoga1.jpeg \
# --prompt "a man is doing yoga in a serene park" \
# --negative_prompt "monochrome, lowres, bad anatomy" \
# --num_steps 30 \
# --seed 42 \
# --width 512 \
# --height 512 \
# --guidance_scale 7.5 \
# --controlnet_conditioning_scale 0.8 \
# --output_dir "tests/test_data" \
# --save_output
# Using input_image
# python script.py \
# --config_path configs/model_ckpts.yaml \
# --input_image "tests/test_data/yoga1.jpg" \
# --prompt "a man is doing yoga in a serene park" \
# --negative_prompt "monochrome, lowres, bad anatomy" \
# --num_steps 30 \
# --seed 42 \
# --width 512 \
# --height 512 \
# --guidance_scale 7.5 \
# --controlnet_conditioning_scale 0.8 \
# --output_dir "tests/test_data" \
# --save_output