File size: 6,295 Bytes
32475ad
 
 
8e477e5
 
 
 
 
 
 
32475ad
 
44db4cf
8e477e5
 
 
 
 
 
44db4cf
32475ad
fb73398
 
8e477e5
32475ad
 
 
 
fb73398
 
8e477e5
32475ad
 
 
 
 
 
 
 
 
 
44db4cf
32475ad
 
 
 
8e477e5
 
 
 
 
44db4cf
8e477e5
 
44db4cf
8e477e5
 
 
738f792
32475ad
 
 
 
8e477e5
44db4cf
8e477e5
 
 
 
32475ad
 
 
 
 
 
8e477e5
 
 
32475ad
 
8e477e5
 
 
738f792
8e477e5
 
 
 
 
 
 
fb73398
8e477e5
fb73398
 
8e477e5
 
 
32475ad
8e477e5
 
 
 
 
 
 
 
 
32475ad
 
 
44db4cf
8e477e5
 
 
32475ad
 
fb73398
 
 
8e477e5
32475ad
 
8e477e5
 
 
 
 
 
 
 
 
 
 
 
 
32475ad
 
8e477e5
32475ad
 
fb73398
32475ad
fb73398
 
 
fe6f7ca
32475ad
 
44db4cf
 
 
 
32475ad
 
fb73398
 
8e477e5
 
 
32475ad
 
 
 
8e477e5
8a0c1c1
32475ad
 
8e477e5
fb73398
32475ad
8e477e5
fb73398
32475ad
 
 
 
fb73398
32475ad
8e477e5
32475ad
 
 
 
44db4cf
738f792
44db4cf
 
 
738f792
44db4cf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import os
import gradio as gr
import torch
from threading import Thread
from transformers import (
    pipeline,
    AutoTokenizer,
    AutoModelForCausalLM,
    TextIteratorStreamer,
)
from openai import OpenAI

# -------- Runtime tuning for tiny CPU Spaces --------
try:
    torch.set_num_threads(min(2, os.cpu_count() or 2))
    torch.set_num_interop_threads(1)
except Exception:
    pass

# -------- Model choices --------
MODEL_OPTIONS = [
    "GPT-1 (openai-gpt) - local",
    "GPT-2 (gpt2) - local",
    "DistilGPT-2 (distilgpt2) - local (fast)",
    "GPT-3.5 (gpt-3.5-turbo) - OpenAI",
]

MODEL_MAP = {
    "GPT-1 (openai-gpt) - local": {"kind": "hf", "id": "openai-gpt"},
    "GPT-2 (gpt2) - local": {"kind": "hf", "id": "gpt2"},
    "DistilGPT-2 (distilgpt2) - local (fast)": {"kind": "hf", "id": "distilgpt2"},
    "GPT-3.5 (gpt-3.5-turbo) - OpenAI": {"kind": "openai-chat", "id": "gpt-3.5-turbo"},
}

HF_PIPELINES = {}

OPENAI_KEY = os.getenv("OPENAI_API_KEY")
OPENAI_CLIENT = OpenAI(api_key=OPENAI_KEY) if OPENAI_KEY else None


def get_hf_pipeline(model_id: str):
    """Create/fetch a text-generation pipeline; cache to avoid reloads."""
    if model_id in HF_PIPELINES:
        return HF_PIPELINES[model_id]

    device = 0 if torch.cuda.is_available() else -1

    tok = AutoTokenizer.from_pretrained(model_id, use_fast=True)
    mdl = AutoModelForCausalLM.from_pretrained(
        model_id,
        low_cpu_mem_usage=True,
        torch_dtype=torch.float32,  # CPU-safe
    )

    # Older GPT models lack pad_token; map to EOS
    if tok.pad_token_id is None and tok.eos_token_id is not None:
        tok.pad_token = tok.eos_token

    gen = pipeline("text-generation", model=mdl, tokenizer=tok, device=device)
    HF_PIPELINES[model_id] = gen
    return gen


def generate_stream(model_choice, prompt, max_new_tokens, temperature, top_p, seed):
    """Stream tokens for both HF and OpenAI to improve perceived latency."""
    prompt = (prompt or "").strip()
    if not prompt:
        yield "Please enter a prompt."
        return

    info = MODEL_MAP[model_choice]
    kind = info["kind"]
    model_id = info["id"]

    try:
        if seed is not None and int(seed) >= 0:
            torch.manual_seed(int(seed))

        if kind == "hf":
            gen = get_hf_pipeline(model_id)
            tok = gen.tokenizer
            mdl = gen.model

            streamer = TextIteratorStreamer(tok, skip_prompt=True, skip_special_tokens=True)

            inputs = tok(prompt, return_tensors="pt")
            if torch.cuda.is_available():
                inputs = {k: v.to("cuda") for k, v in inputs.items()}

            generate_kwargs = dict(
                **inputs,
                max_new_tokens=int(max_new_tokens),
                do_sample=float(temperature) > 0.0,
                temperature=max(1e-6, float(temperature)),
                top_p=float(top_p),
                pad_token_id=tok.eos_token_id,
                eos_token_id=tok.eos_token_id,
                streamer=streamer,
            )

            thread = Thread(target=mdl.generate, kwargs=generate_kwargs)
            thread.start()

            out = ""
            for token_text in streamer:
                out += token_text
                yield out
            return

        if kind == "openai-chat":
            if OPENAI_CLIENT is None:
                yield "⚠️ To use GPT-3.5, set OPENAI_API_KEY in Space (Settings → Variables & secrets)."
                return

            stream = OPENAI_CLIENT.chat.completions.create(
                model=model_id,
                messages=[{"role": "user", "content": prompt}],
                max_tokens=int(max_new_tokens),
                temperature=float(temperature),
                top_p=float(top_p),
                stream=True,
            )

            out = ""
            for chunk in stream:
                delta = ""
                try:
                    delta = chunk.choices[0].delta.content or ""
                except Exception:
                    delta = getattr(chunk.choices[0], "text", "") or ""
                if delta:
                    out += delta
                    yield out
            return

        yield f"Unknown model kind: {kind}"

    except Exception as e:
        yield f"❌ Error from {model_choice} ({model_id}): {str(e)}"


def maybe_warn(choice):
    info = MODEL_MAP[choice]
    needs_key = (info["kind"] == "openai-chat") and (OPENAI_CLIENT is None)
    if needs_key:
        return gr.update(value="⚠️ GPT-3.5 requires OPENAI_API_KEY in Space secrets.", visible=True)
    return gr.update(visible=False)


# -------- UI --------
CSS = ".gradio-container{max-width:960px;margin:0 auto;}"

with gr.Blocks(title="Mini GPT Playground", css=CSS) as demo:
    gr.Markdown(
        """
        # Mini GPT Playground
        Type a prompt and choose a model.  
        **Local (HF):** GPT-1 / GPT-2 / DistilGPT-2 — runs in this Space container.  
        **OpenAI (API):** GPT-3.5 — requires `OPENAI_API_KEY`.  
        *(Tip: DistilGPT-2 is much faster on CPU.)*
        """
    )

    with gr.Row():
        model_choice = gr.Dropdown(MODEL_OPTIONS, value="DistilGPT-2 (distilgpt2) - local (fast)", label="Model")
        max_new_tokens = gr.Slider(1, 512, value=96, step=1, label="Max new tokens")
    with gr.Row():
        temperature = gr.Slider(0.0, 2.0, value=0.8, step=0.05, label="Temperature")
        top_p = gr.Slider(0.1, 1.0, value=0.9, step=0.01, label="Top-p")
        seed = gr.Number(value=42, precision=0, label="Seed (≥0 to fix sampling)")

    prompt = gr.Textbox(lines=6, label="Prompt", placeholder="Write a short story about a curious robot…")
    warn = gr.Markdown("", visible=False)

    generate_btn = gr.Button("Generate", variant="primary")
    output = gr.Textbox(lines=12, label="Output")

    model_choice.change(maybe_warn, inputs=[model_choice], outputs=[warn])
    generate_btn.click(
        fn=generate_stream,
        inputs=[model_choice, prompt, max_new_tokens, temperature, top_p, seed],
        outputs=[output],
    )

# -------- Spaces-friendly launch (no custom port) --------
try:
    demo = demo.queue(max_size=8)   # keep small on 2 vCPU
except TypeError:
    pass

demo.launch()  # don't pass server_port; Spaces sets it