Spaces:
Sleeping
Sleeping
File size: 6,297 Bytes
1719436 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
import json
import pathlib
from copy import deepcopy
from typing import Callable
from functools import partial
import click
import pandas as pd
import pandera.pandas as pa
from tqdm.auto import tqdm
from langchain_core.runnables import Runnable
from src.common.data import load_dataset
from src.common.schema import DatasetSchema
from src.generate.config import GenerationConfig
from src.generate.schema import GeneratedDatasetSchema
from src.generate.answer import make_root_model, matches_type, string_to_type
from src.generate.generators import GenerationAnswer, GENERATORS_NAME_TO_FACTORY
def _save_temp_file(
row: dict,
result: GenerationAnswer,
temp_path: pathlib.Path,
) -> None:
temp_file = temp_path / f"{row[DatasetSchema.id_]}.json"
json.dump(
{
DatasetSchema.id_: row[DatasetSchema.id_],
GeneratedDatasetSchema.generated_answer: result.model_dump(),
},
open(temp_file, "w"),
ensure_ascii=False,
)
def _generate_single_answer(
row: dict,
build_chain: Callable[[type], Runnable],
temp_path: pathlib.Path = None,
) -> GenerationAnswer:
if temp_path and (temp_path / f"{row[DatasetSchema.id_]}.json").exists():
return GenerationAnswer.model_validate(
json.load(open(temp_path / f"{row[DatasetSchema.id_]}.json", "r"))[GeneratedDatasetSchema.generated_answer]
)
answer_type = make_root_model(row[DatasetSchema.answer_type])
chain = build_chain(answer_type)
row = dict(row)
row.pop(DatasetSchema.correct_answer, None)
result: GenerationAnswer = chain.invoke(row)
if temp_path:
_save_temp_file(row, result, temp_path)
return result
@pa.check_input(DatasetSchema)
@pa.check_output(GeneratedDatasetSchema)
def _generate_answers(
df: pd.DataFrame,
build_chain: Callable[[type], Runnable],
use_tqdm: bool = True,
temp_path: pathlib.Path = None,
) -> pd.DataFrame:
if use_tqdm:
tqdm.pandas()
df[GeneratedDatasetSchema.generated_answer] = df.progress_apply(
partial(
_generate_single_answer,
build_chain=build_chain,
temp_path=temp_path,
),
axis=1,
)
else:
df[GeneratedDatasetSchema.generated_answer] = df.apply(
partial(
_generate_single_answer,
build_chain=build_chain,
temp_path=temp_path,
),
axis=1,
)
df = df[list(GeneratedDatasetSchema._collect_fields().keys())]
return df
@click.command()
@click.option(
"--config-path",
type=click.Path(exists=True, dir_okay=False),
default=pathlib.Path("configs/ollama.yaml"),
help="Path to the configuration file.",
)
@click.option(
"--output-path",
type=click.Path(dir_okay=False),
default=pathlib.Path("./gemma3:4b.jsonl"),
help="Path to the output file.",
)
@click.option(
"--temp-path",
type=click.Path(dir_okay=True, file_okay=False),
default=pathlib.Path("./tmp_gemma3:4b/"),
help="Path to the temp files directory.",
)
@click.option(
"--use-tqdm",
is_flag=True,
default=True,
help="Whether to use tqdm for progress bar.",
)
def generate(
config_path: pathlib.Path = pathlib.Path("configs/ollama.yaml"),
output_path: pathlib.Path = pathlib.Path("./gemma3:4b.jsonl"),
temp_path: pathlib.Path = pathlib.Path("./tmp_gemma3:4b/"),
use_tqdm: bool = True,
):
output_path = pathlib.Path(output_path)
temp_path = pathlib.Path(temp_path)
output_path.parent.mkdir(parents=True, exist_ok=True)
temp_path.mkdir(parents=True, exist_ok=True)
config = GenerationConfig.from_file(config_path)
df = load_dataset()
# df = df.head(3)
build_chain_function = GENERATORS_NAME_TO_FACTORY[config.build_function]
build_chain_function = partial(
build_chain_function,
llm_class=config.llm_class,
structured_output_method=config.structured_output_method,
**config.kwargs
)
df = _generate_answers(df, build_chain_function, use_tqdm=use_tqdm, temp_path=temp_path)
df[GeneratedDatasetSchema.generated_answer] = df[GeneratedDatasetSchema.generated_answer].apply(
lambda x: x.model_dump()
)
df.to_json(
output_path,
lines=True,
orient="records",
force_ascii=False,
)
@pa.check_input(GeneratedDatasetSchema)
def _type_sanitycheck(
generated_df: pd.DataFrame,
) -> tuple[bool, str]:
generated_df[GeneratedDatasetSchema.generated_answer] = generated_df[GeneratedDatasetSchema.generated_answer].apply(
lambda x: GenerationAnswer.model_validate(deepcopy(x)) if not isinstance(x, GenerationAnswer) else x
)
dataset_df = load_dataset()
predicted_df = dataset_df.join(
generated_df.set_index(GeneratedDatasetSchema.id_),
on=DatasetSchema.id_,
rsuffix='_generated',
).dropna(subset=[GeneratedDatasetSchema.generated_answer])
if len(predicted_df) == 0:
return False, "No valid predictions found."
TYPE_MATCH = "type_match"
predicted_df[TYPE_MATCH] = predicted_df.apply(
lambda row: matches_type(
row[GeneratedDatasetSchema.generated_answer].answer,
string_to_type(row[DatasetSchema.answer_type]),
), axis=1
)
if not predicted_df[TYPE_MATCH].all():
return False, f"Type mismatch found for {predicted_df[~predicted_df[TYPE_MATCH]][DatasetSchema.id_].tolist()}."
return True, f"All matched. Predicted count: {len(predicted_df)} of {len(dataset_df)}"
@click.command()
@click.option(
"--file",
type=click.Path(exists=True, dir_okay=False),
default=pathlib.Path("./gemma3:4b.jsonl"),
help="Path to the generated dataset file.",
)
def type_sanitycheck(
file: pathlib.Path = pathlib.Path("./gemma3:4b.jsonl"),
):
df = pd.read_json(file, lines=True)
types_correct, message = _type_sanitycheck(df)
if not types_correct:
click.echo(f"β Type sanity check failed: {message}")
exit(1)
click.echo(f"β
Type sanity check passed: {message}")
@click.group()
def cli():
pass
cli.add_command(generate)
cli.add_command(type_sanitycheck)
if __name__ == "__main__":
cli()
|