Spaces:
Running
on
Zero
Running
on
Zero
simplify UI
Browse files- .gitattributes +2 -0
- README.md +47 -1
- app.py +44 -95
- samples/n02086240_2799.JPEG +3 -0
- samples/n03417042_5234.JPEG +3 -0
- samples/unsafe.jpeg +3 -0
- tools/synth.py +0 -1
.gitattributes
CHANGED
|
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
*.JPEG filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -9,4 +9,50 @@ app_file: app.py
|
|
| 9 |
pinned: false
|
| 10 |
---
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
pinned: false
|
| 10 |
---
|
| 11 |
|
| 12 |
+
# Generative Data Augmentation Demo
|
| 13 |
+
|
| 14 |
+
Main GitHub Repo: [Generative Data Augmentation](https://github.com/zhulinchng/generative-data-augmentation) | Image Classification Demo: [Generative Augmented Classifiers](https://huggingface.co/spaces/czl/generative-augmented-classifiers).
|
| 15 |
+
|
| 16 |
+
This demo is created as part of the 'Investigating the Effectiveness of Generative Diffusion Models in Synthesizing Images for Data Augmentation in Image Classification' dissertation.
|
| 17 |
+
|
| 18 |
+
The user can augment an image by interpolating between two prompts, and specify the number of interpolation steps and the specific step to generate the image.
|
| 19 |
+
|
| 20 |
+
## Demo Usage Instructions
|
| 21 |
+
|
| 22 |
+
1. Upload an image.
|
| 23 |
+
2. Enter the two prompts to interpolate between, the first prompt should contain the desired class of the augmented image, the second prompt should contain the undesired class (i.e., confusing class).
|
| 24 |
+
|
| 25 |
+
## Configuration
|
| 26 |
+
|
| 27 |
+
- Total Interpolation Steps: The number of steps to interpolate between the two prompts.
|
| 28 |
+
- Interpolation Step: The specific step to generate the image.
|
| 29 |
+
- Example for 10 steps:
|
| 30 |
+
|
| 31 |
+
```python
|
| 32 |
+
Total: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
|
| 33 |
+
Sampled: 4
|
| 34 |
+
```
|
| 35 |
+
|
| 36 |
+
- Seed: Seed value for reproducibility.
|
| 37 |
+
- Negative Prompt: Prompt to guide the model away from generating the image.
|
| 38 |
+
- Width, Height: The dimensions of the generated image.
|
| 39 |
+
- Guidance Scale: The scale of the guide the model on how closely to follow the prompts.
|
| 40 |
+
|
| 41 |
+
## Metadata
|
| 42 |
+
|
| 43 |
+
[SSIM Score](https://lightning.ai/docs/torchmetrics/stable/image/structural_similarity.html): Structural Similarity Index (SSIM) score between the original and generated image, ranges from 0 to 1.
|
| 44 |
+
[CLIP Score](https://lightning.ai/docs/torchmetrics/stable/multimodal/clip_score.html): CLIP similarity score between the original and generated image, ranges from 0 to 100.
|
| 45 |
+
|
| 46 |
+
## Local Setup
|
| 47 |
+
|
| 48 |
+
```bash
|
| 49 |
+
git clone https://huggingface.co/spaces/czl/generative-data-augmentation-demo
|
| 50 |
+
cd generative-data-augmentation-demo
|
| 51 |
+
# Setup the data directory structure as shown above
|
| 52 |
+
conda create --name $env_name python=3.11.* # Replace $env_name with your environment name
|
| 53 |
+
conda activate $env_name
|
| 54 |
+
# Visit PyTorch website https://pytorch.org/get-started/previous-versions/#v212 for PyTorch installation instructions.
|
| 55 |
+
pip install torch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 --index-url # Obtain the correct URL from the PyTorch website
|
| 56 |
+
pip install -r requirements.txt
|
| 57 |
+
python app.py
|
| 58 |
+
```
|
app.py
CHANGED
|
@@ -4,6 +4,7 @@ import gradio as gr
|
|
| 4 |
import numpy as np
|
| 5 |
import torch
|
| 6 |
import torchvision.transforms as transforms
|
|
|
|
| 7 |
from torchmetrics.functional.image import structural_similarity_index_measure as ssim
|
| 8 |
from transformers import CLIPModel, CLIPProcessor
|
| 9 |
|
|
@@ -45,8 +46,6 @@ def infer(
|
|
| 45 |
interpolation_step,
|
| 46 |
num_inference_steps,
|
| 47 |
num_interpolation_steps,
|
| 48 |
-
sample_mid_interpolation,
|
| 49 |
-
remove_n_middle,
|
| 50 |
):
|
| 51 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 52 |
|
|
@@ -55,38 +54,15 @@ def infer(
|
|
| 55 |
assert num_interpolation_steps % 2 == 0
|
| 56 |
except AssertionError:
|
| 57 |
raise ValueError("num_interpolation_steps must be an even number")
|
| 58 |
-
try:
|
| 59 |
-
assert sample_mid_interpolation % 2 == 0
|
| 60 |
-
except AssertionError:
|
| 61 |
-
raise ValueError("sample_mid_interpolation must be an even number")
|
| 62 |
-
try:
|
| 63 |
-
assert remove_n_middle % 2 == 0
|
| 64 |
-
except AssertionError:
|
| 65 |
-
raise ValueError("remove_n_middle must be an even number")
|
| 66 |
-
try:
|
| 67 |
-
assert num_interpolation_steps >= sample_mid_interpolation
|
| 68 |
-
except AssertionError:
|
| 69 |
-
raise ValueError(
|
| 70 |
-
"num_interpolation_steps must be greater than or equal to sample_mid_interpolation"
|
| 71 |
-
)
|
| 72 |
-
try:
|
| 73 |
-
assert num_interpolation_steps >= 2 and sample_mid_interpolation >= 2
|
| 74 |
-
except AssertionError:
|
| 75 |
-
raise ValueError(
|
| 76 |
-
"num_interpolation_steps and sample_mid_interpolation must be greater than or equal to 2"
|
| 77 |
-
)
|
| 78 |
-
try:
|
| 79 |
-
assert sample_mid_interpolation - remove_n_middle >= 2
|
| 80 |
-
except AssertionError:
|
| 81 |
-
raise ValueError(
|
| 82 |
-
"sample_mid_interpolation must be greater than or equal to remove_n_middle + 2"
|
| 83 |
-
)
|
| 84 |
|
| 85 |
if randomize_seed:
|
| 86 |
seed = random.randint(0, MAX_SEED)
|
| 87 |
prompts = [prompt1, prompt2]
|
| 88 |
generator = torch.Generator().manual_seed(seed)
|
| 89 |
|
|
|
|
|
|
|
|
|
|
| 90 |
interpolated_prompt_embeds, prompt_metadata = synth.interpolatePrompts(
|
| 91 |
prompts,
|
| 92 |
pipe,
|
|
@@ -116,7 +92,6 @@ def infer(
|
|
| 116 |
).to(device)
|
| 117 |
embed_pairs = zip(interpolated_prompt_embeds, interpolated_negative_prompts_embeds)
|
| 118 |
embed_pairs_list = list(embed_pairs)
|
| 119 |
-
print(len(embed_pairs_list))
|
| 120 |
# offset step by -1
|
| 121 |
prompt_embeds, negative_prompt_embeds = embed_pairs_list[interpolation_step - 1]
|
| 122 |
preprocess_input = transforms.Compose(
|
|
@@ -127,7 +102,7 @@ def infer(
|
|
| 127 |
npe = negative_prompt_embeds[None, ...]
|
| 128 |
else:
|
| 129 |
npe = None
|
| 130 |
-
|
| 131 |
height=height,
|
| 132 |
width=width,
|
| 133 |
num_images_per_prompt=1,
|
|
@@ -138,7 +113,13 @@ def infer(
|
|
| 138 |
generator=generator,
|
| 139 |
latents=latents,
|
| 140 |
image=input_img_tensor,
|
| 141 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
pred_image = transforms.ToTensor()(image).unsqueeze(0)
|
| 143 |
ssim_score = ssim(pred_image, input_img_tensor).item()
|
| 144 |
real_inputs = clip_processor(
|
|
@@ -163,25 +144,17 @@ def infer(
|
|
| 163 |
|
| 164 |
|
| 165 |
examples1 = [
|
| 166 |
-
"A photo of a
|
| 167 |
"A photo of a Shih-Tzu, a type of dog",
|
| 168 |
]
|
| 169 |
examples2 = [
|
| 170 |
-
"A photo of a
|
| 171 |
"A photo of a beagle, a type of dog",
|
| 172 |
]
|
| 173 |
|
| 174 |
|
| 175 |
def update_steps(total_steps, interpolation_step):
|
| 176 |
-
|
| 177 |
-
return gr.update(maximum=total_steps // 2, value=total_steps)
|
| 178 |
-
return gr.update(maximum=total_steps // 2)
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
def update_sampling_steps(total_steps, sample_steps):
|
| 182 |
-
# if sample_steps > total_steps:
|
| 183 |
-
# return gr.update(value=total_steps)
|
| 184 |
-
return gr.update(value=total_steps)
|
| 185 |
|
| 186 |
|
| 187 |
def update_format(image_format):
|
|
@@ -211,7 +184,7 @@ with gr.Blocks(title="Generative Date Augmentation Demo") as demo:
|
|
| 211 |
label="Prompt for the image to synthesize. (Actual class)",
|
| 212 |
show_label=True,
|
| 213 |
max_lines=1,
|
| 214 |
-
placeholder="Enter
|
| 215 |
container=False,
|
| 216 |
)
|
| 217 |
with gr.Row():
|
|
@@ -219,32 +192,44 @@ with gr.Blocks(title="Generative Date Augmentation Demo") as demo:
|
|
| 219 |
label="Prompt to augment against. (Confusing class)",
|
| 220 |
show_label=True,
|
| 221 |
max_lines=1,
|
| 222 |
-
placeholder="Enter
|
| 223 |
container=False,
|
| 224 |
)
|
| 225 |
with gr.Row():
|
| 226 |
gr.Examples(
|
| 227 |
-
examples=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 228 |
)
|
| 229 |
gr.Examples(
|
| 230 |
-
examples=examples2,
|
|
|
|
|
|
|
| 231 |
)
|
| 232 |
|
| 233 |
with gr.Row():
|
| 234 |
-
interpolation_step = gr.Slider(
|
| 235 |
-
label="Specific Interpolation Step",
|
| 236 |
-
minimum=1,
|
| 237 |
-
maximum=8,
|
| 238 |
-
step=1,
|
| 239 |
-
value=8,
|
| 240 |
-
)
|
| 241 |
num_interpolation_steps = gr.Slider(
|
| 242 |
-
label="Total
|
| 243 |
minimum=2,
|
| 244 |
-
maximum=
|
| 245 |
step=2,
|
| 246 |
value=16,
|
| 247 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 248 |
num_interpolation_steps.change(
|
| 249 |
fn=update_steps,
|
| 250 |
inputs=[num_interpolation_steps, interpolation_step],
|
|
@@ -305,27 +290,6 @@ with gr.Blocks(title="Generative Date Augmentation Demo") as demo:
|
|
| 305 |
step=1,
|
| 306 |
value=25,
|
| 307 |
)
|
| 308 |
-
with gr.Row():
|
| 309 |
-
sample_mid_interpolation = gr.Slider(
|
| 310 |
-
label="Number of sampling steps in the middle of interpolation",
|
| 311 |
-
minimum=2,
|
| 312 |
-
maximum=80,
|
| 313 |
-
step=2,
|
| 314 |
-
value=16,
|
| 315 |
-
)
|
| 316 |
-
num_interpolation_steps.change(
|
| 317 |
-
fn=update_sampling_steps,
|
| 318 |
-
inputs=[num_interpolation_steps, sample_mid_interpolation],
|
| 319 |
-
outputs=[sample_mid_interpolation],
|
| 320 |
-
)
|
| 321 |
-
with gr.Row():
|
| 322 |
-
remove_n_middle = gr.Slider(
|
| 323 |
-
label="Number of middle steps to remove from interpolation",
|
| 324 |
-
minimum=0,
|
| 325 |
-
maximum=80,
|
| 326 |
-
step=2,
|
| 327 |
-
value=0,
|
| 328 |
-
)
|
| 329 |
with gr.Row():
|
| 330 |
image_type = gr.Radio(
|
| 331 |
choices=[
|
|
@@ -372,6 +336,10 @@ Note: Running on CPU will take longer (approx. 6 minutes with default settings).
|
|
| 372 |
This demo is created as part of the 'Investigating the Effectiveness of Generative Diffusion Models in Synthesizing Images for Data Augmentation in Image Classification' dissertation.
|
| 373 |
|
| 374 |
The user can augment an image by interpolating between two prompts, and specify the number of interpolation steps and the specific step to generate the image.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 375 |
"""
|
| 376 |
)
|
| 377 |
run_button.click(
|
|
@@ -389,27 +357,8 @@ The user can augment an image by interpolating between two prompts, and specify
|
|
| 389 |
interpolation_step,
|
| 390 |
num_inference_steps,
|
| 391 |
num_interpolation_steps,
|
| 392 |
-
sample_mid_interpolation,
|
| 393 |
-
remove_n_middle,
|
| 394 |
],
|
| 395 |
outputs=[result, show_seed, ssim_score, cos_sim],
|
| 396 |
)
|
| 397 |
|
| 398 |
demo.queue().launch(show_error=True)
|
| 399 |
-
|
| 400 |
-
"""
|
| 401 |
-
input_image,
|
| 402 |
-
prompt1,
|
| 403 |
-
prompt2,
|
| 404 |
-
negative_prompt,
|
| 405 |
-
seed,
|
| 406 |
-
randomize_seed,
|
| 407 |
-
width,
|
| 408 |
-
height,
|
| 409 |
-
guidance_scale,
|
| 410 |
-
interpolation_step,
|
| 411 |
-
num_inference_steps,
|
| 412 |
-
num_interpolation_steps,
|
| 413 |
-
sample_mid_interpolation,
|
| 414 |
-
remove_n_middle,
|
| 415 |
-
"""
|
|
|
|
| 4 |
import numpy as np
|
| 5 |
import torch
|
| 6 |
import torchvision.transforms as transforms
|
| 7 |
+
from PIL import Image
|
| 8 |
from torchmetrics.functional.image import structural_similarity_index_measure as ssim
|
| 9 |
from transformers import CLIPModel, CLIPProcessor
|
| 10 |
|
|
|
|
| 46 |
interpolation_step,
|
| 47 |
num_inference_steps,
|
| 48 |
num_interpolation_steps,
|
|
|
|
|
|
|
| 49 |
):
|
| 50 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 51 |
|
|
|
|
| 54 |
assert num_interpolation_steps % 2 == 0
|
| 55 |
except AssertionError:
|
| 56 |
raise ValueError("num_interpolation_steps must be an even number")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
if randomize_seed:
|
| 59 |
seed = random.randint(0, MAX_SEED)
|
| 60 |
prompts = [prompt1, prompt2]
|
| 61 |
generator = torch.Generator().manual_seed(seed)
|
| 62 |
|
| 63 |
+
sample_mid_interpolation = num_interpolation_steps
|
| 64 |
+
remove_n_middle = 0
|
| 65 |
+
|
| 66 |
interpolated_prompt_embeds, prompt_metadata = synth.interpolatePrompts(
|
| 67 |
prompts,
|
| 68 |
pipe,
|
|
|
|
| 92 |
).to(device)
|
| 93 |
embed_pairs = zip(interpolated_prompt_embeds, interpolated_negative_prompts_embeds)
|
| 94 |
embed_pairs_list = list(embed_pairs)
|
|
|
|
| 95 |
# offset step by -1
|
| 96 |
prompt_embeds, negative_prompt_embeds = embed_pairs_list[interpolation_step - 1]
|
| 97 |
preprocess_input = transforms.Compose(
|
|
|
|
| 102 |
npe = negative_prompt_embeds[None, ...]
|
| 103 |
else:
|
| 104 |
npe = None
|
| 105 |
+
images_list = pipe(
|
| 106 |
height=height,
|
| 107 |
width=width,
|
| 108 |
num_images_per_prompt=1,
|
|
|
|
| 113 |
generator=generator,
|
| 114 |
latents=latents,
|
| 115 |
image=input_img_tensor,
|
| 116 |
+
)
|
| 117 |
+
if images_list["nsfw_content_detected"][0]:
|
| 118 |
+
image = Image.open("samples/unsafe.jpeg")
|
| 119 |
+
return image, seed, "Unsafe content detected", "Unsafe content detected"
|
| 120 |
+
else:
|
| 121 |
+
image = images_list.images[0]
|
| 122 |
+
|
| 123 |
pred_image = transforms.ToTensor()(image).unsqueeze(0)
|
| 124 |
ssim_score = ssim(pred_image, input_img_tensor).item()
|
| 125 |
real_inputs = clip_processor(
|
|
|
|
| 144 |
|
| 145 |
|
| 146 |
examples1 = [
|
| 147 |
+
"A photo of a garbage truck, dustcart",
|
| 148 |
"A photo of a Shih-Tzu, a type of dog",
|
| 149 |
]
|
| 150 |
examples2 = [
|
| 151 |
+
"A photo of a cassette player",
|
| 152 |
"A photo of a beagle, a type of dog",
|
| 153 |
]
|
| 154 |
|
| 155 |
|
| 156 |
def update_steps(total_steps, interpolation_step):
|
| 157 |
+
return gr.update(maximum=total_steps)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
|
| 159 |
|
| 160 |
def update_format(image_format):
|
|
|
|
| 184 |
label="Prompt for the image to synthesize. (Actual class)",
|
| 185 |
show_label=True,
|
| 186 |
max_lines=1,
|
| 187 |
+
placeholder="Enter Prompt for the image to synthesize. (Actual class)",
|
| 188 |
container=False,
|
| 189 |
)
|
| 190 |
with gr.Row():
|
|
|
|
| 192 |
label="Prompt to augment against. (Confusing class)",
|
| 193 |
show_label=True,
|
| 194 |
max_lines=1,
|
| 195 |
+
placeholder="Enter Prompt to augment against. (Confusing class)",
|
| 196 |
container=False,
|
| 197 |
)
|
| 198 |
with gr.Row():
|
| 199 |
gr.Examples(
|
| 200 |
+
examples=[
|
| 201 |
+
"samples/n03417042_5234.JPEG",
|
| 202 |
+
"samples/n02086240_2799.JPEG",
|
| 203 |
+
],
|
| 204 |
+
inputs=[input_image],
|
| 205 |
+
label="Example Images",
|
| 206 |
+
)
|
| 207 |
+
gr.Examples(
|
| 208 |
+
examples=examples1,
|
| 209 |
+
inputs=[prompt1],
|
| 210 |
+
label="Example for Prompt 1 (Actual class)",
|
| 211 |
)
|
| 212 |
gr.Examples(
|
| 213 |
+
examples=examples2,
|
| 214 |
+
inputs=[prompt2],
|
| 215 |
+
label="Example for Prompt 2 (Confusing class)",
|
| 216 |
)
|
| 217 |
|
| 218 |
with gr.Row():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 219 |
num_interpolation_steps = gr.Slider(
|
| 220 |
+
label="Total Interpolation Steps",
|
| 221 |
minimum=2,
|
| 222 |
+
maximum=128,
|
| 223 |
step=2,
|
| 224 |
value=16,
|
| 225 |
)
|
| 226 |
+
interpolation_step = gr.Slider(
|
| 227 |
+
label="Sample Interpolation Step",
|
| 228 |
+
minimum=1,
|
| 229 |
+
maximum=16,
|
| 230 |
+
step=1,
|
| 231 |
+
value=8,
|
| 232 |
+
)
|
| 233 |
num_interpolation_steps.change(
|
| 234 |
fn=update_steps,
|
| 235 |
inputs=[num_interpolation_steps, interpolation_step],
|
|
|
|
| 290 |
step=1,
|
| 291 |
value=25,
|
| 292 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 293 |
with gr.Row():
|
| 294 |
image_type = gr.Radio(
|
| 295 |
choices=[
|
|
|
|
| 336 |
This demo is created as part of the 'Investigating the Effectiveness of Generative Diffusion Models in Synthesizing Images for Data Augmentation in Image Classification' dissertation.
|
| 337 |
|
| 338 |
The user can augment an image by interpolating between two prompts, and specify the number of interpolation steps and the specific step to generate the image.
|
| 339 |
+
|
| 340 |
+
View the files used in this demo [here](https://huggingface.co/spaces/czl/generative-data-augmentation-demo/tree/main).
|
| 341 |
+
|
| 342 |
+
Note: Safety checker is enabled to prevent unsafe content from being displayed in this public demo.
|
| 343 |
"""
|
| 344 |
)
|
| 345 |
run_button.click(
|
|
|
|
| 357 |
interpolation_step,
|
| 358 |
num_inference_steps,
|
| 359 |
num_interpolation_steps,
|
|
|
|
|
|
|
| 360 |
],
|
| 361 |
outputs=[result, show_seed, ssim_score, cos_sim],
|
| 362 |
)
|
| 363 |
|
| 364 |
demo.queue().launch(show_error=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
samples/n02086240_2799.JPEG
ADDED
|
|
Git LFS Details
|
samples/n03417042_5234.JPEG
ADDED
|
|
Git LFS Details
|
samples/unsafe.jpeg
ADDED
|
Git LFS Details
|
tools/synth.py
CHANGED
|
@@ -157,7 +157,6 @@ def pipe_img(
|
|
| 157 |
scheduler=scheduler,
|
| 158 |
torch_dtype=torch.float32,
|
| 159 |
use_safetensors=use_safetensors,
|
| 160 |
-
safety_checker=None,
|
| 161 |
).to(device)
|
| 162 |
if cpu_offload:
|
| 163 |
pipe.enable_model_cpu_offload()
|
|
|
|
| 157 |
scheduler=scheduler,
|
| 158 |
torch_dtype=torch.float32,
|
| 159 |
use_safetensors=use_safetensors,
|
|
|
|
| 160 |
).to(device)
|
| 161 |
if cpu_offload:
|
| 162 |
pipe.enable_model_cpu_offload()
|