Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +36 -35
- README.md +12 -12
- app.py +309 -0
- data/Imagenette.txt +10 -0
- data/Imagenette/val/n01440764/ILSVRC2012_val_00009111.JPEG +0 -0
- data/Imagenette/val/n01440764/ILSVRC2012_val_00009191.JPEG +0 -0
- data/Imagenette/val/n02102040/ILSVRC2012_val_00004650.JPEG +0 -0
- data/Imagenette/val/n02102040/ILSVRC2012_val_00007032.JPEG +0 -0
- data/Imagenette/val/n02979186/ILSVRC2012_val_00008651.JPEG +0 -0
- data/Imagenette/val/n02979186/ILSVRC2012_val_00020400.JPEG +0 -0
- data/Imagenette/val/n03000684/ILSVRC2012_val_00004262.JPEG +0 -0
- data/Imagenette/val/n03000684/ILSVRC2012_val_00007460.JPEG +0 -0
- data/Imagenette/val/n03028079/ILSVRC2012_val_00003351.JPEG +0 -0
- data/Imagenette/val/n03028079/ILSVRC2012_val_00003682.JPEG +0 -0
- data/Imagenette/val/n03394916/ILSVRC2012_val_00001492.JPEG +0 -0
- data/Imagenette/val/n03394916/ILSVRC2012_val_00003620.JPEG +0 -0
- data/Imagenette/val/n03417042/ILSVRC2012_val_00002210.JPEG +0 -0
- data/Imagenette/val/n03417042/ILSVRC2012_val_00006922.JPEG +0 -0
- data/Imagenette/val/n03425413/ILSVRC2012_val_00000732.JPEG +0 -0
- data/Imagenette/val/n03425413/ILSVRC2012_val_00001432.JPEG +0 -0
- data/Imagenette/val/n03445777/ILSVRC2012_val_00008161.JPEG +0 -0
- data/Imagenette/val/n03445777/ILSVRC2012_val_00009902.JPEG +0 -0
- data/Imagenette/val/n03888257/ILSVRC2012_val_00001440.JPEG +0 -0
- data/Imagenette/val/n03888257/ILSVRC2012_val_00002990.JPEG +0 -0
- data/Imagewoof.txt +10 -0
- data/Imagewoof/val/n02086240/ILSVRC2012_val_00002701.JPEG +0 -0
- data/Imagewoof/val/n02086240/ILSVRC2012_val_00003841.JPEG +0 -0
- data/Imagewoof/val/n02087394/ILSVRC2012_val_00000102.JPEG +0 -0
- data/Imagewoof/val/n02087394/ILSVRC2012_val_00001651.JPEG +0 -0
- data/Imagewoof/val/n02088364/ILSVRC2012_val_00005291.JPEG +0 -0
- data/Imagewoof/val/n02088364/ILSVRC2012_val_00005922.JPEG +0 -0
- data/Imagewoof/val/n02089973/ILSVRC2012_val_00003671.JPEG +0 -0
- data/Imagewoof/val/n02089973/ILSVRC2012_val_00007850.JPEG +0 -0
- data/Imagewoof/val/n02093754/ILSVRC2012_val_00000832.JPEG +0 -0
- data/Imagewoof/val/n02093754/ILSVRC2012_val_00004511.JPEG +0 -0
- data/Imagewoof/val/n02096294/ILSVRC2012_val_00003690.JPEG +0 -0
- data/Imagewoof/val/n02096294/ILSVRC2012_val_00009052.JPEG +0 -0
- data/Imagewoof/val/n02099601/ILSVRC2012_val_00001112.JPEG +0 -0
- data/Imagewoof/val/n02099601/ILSVRC2012_val_00001191.JPEG +0 -0
- data/Imagewoof/val/n02105641/ILSVRC2012_val_00004361.JPEG +0 -0
- data/Imagewoof/val/n02105641/ILSVRC2012_val_00005390.JPEG +0 -0
- data/Imagewoof/val/n02111889/ILSVRC2012_val_00000590.JPEG +0 -0
- data/Imagewoof/val/n02111889/ILSVRC2012_val_00003490.JPEG +0 -0
- data/Imagewoof/val/n02115641/ILSVRC2012_val_00001212.JPEG +0 -0
- data/Imagewoof/val/n02115641/ILSVRC2012_val_00004320.JPEG +0 -0
- data/Stanford_dogs.txt +120 -0
- data/Stanford_dogs/val/n02085620-Chihuahua/n02085620_10074.jpg +0 -0
- data/Stanford_dogs/val/n02085620-Chihuahua/n02085620_10131.jpg +0 -0
- data/Stanford_dogs/val/n02085782-Japanese_spaniel/n02085782_1039.jpg +0 -0
- data/Stanford_dogs/val/n02085782-Japanese_spaniel/n02085782_1058.jpg +0 -0
.gitattributes
CHANGED
|
@@ -1,35 +1,36 @@
|
|
| 1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
data/Stanford_dogs/val/n02093859-Kerry_blue_terrier/n02093859_1003.jpg filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -1,12 +1,12 @@
|
|
| 1 |
-
---
|
| 2 |
-
title: Generative Augmented Classifiers
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
-
sdk: gradio
|
| 7 |
-
sdk_version: 4.36.1
|
| 8 |
-
app_file: app.py
|
| 9 |
-
pinned: false
|
| 10 |
-
---
|
| 11 |
-
|
| 12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: Generative Augmented Classifiers
|
| 3 |
+
emoji: 💻
|
| 4 |
+
colorFrom: gray
|
| 5 |
+
colorTo: indigo
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 4.36.1
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,309 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import random
|
| 2 |
+
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import torch
|
| 5 |
+
import torchvision
|
| 6 |
+
import torchvision.transforms as transforms
|
| 7 |
+
from PIL import Image
|
| 8 |
+
from torch import nn
|
| 9 |
+
from torchvision.models import mobilenet_v2, resnet18
|
| 10 |
+
from torchvision.transforms.functional import InterpolationMode
|
| 11 |
+
|
| 12 |
+
datasets_n_classes = {
|
| 13 |
+
"Imagenette": 10,
|
| 14 |
+
"Imagewoof": 10,
|
| 15 |
+
"Stanford_dogs": 120,
|
| 16 |
+
}
|
| 17 |
+
|
| 18 |
+
datasets_model_types = {
|
| 19 |
+
"Imagenette": [
|
| 20 |
+
"base_200",
|
| 21 |
+
"base_200+100",
|
| 22 |
+
"synthetic_200",
|
| 23 |
+
"augment_noisy_200",
|
| 24 |
+
"augment_noisy_200+100",
|
| 25 |
+
"augment_clean_200",
|
| 26 |
+
],
|
| 27 |
+
"Imagewoof": [
|
| 28 |
+
"base_200",
|
| 29 |
+
"base_200+100",
|
| 30 |
+
"synthetic_200",
|
| 31 |
+
"augment_noisy_200",
|
| 32 |
+
"augment_noisy_200+100",
|
| 33 |
+
"augment_clean_200",
|
| 34 |
+
],
|
| 35 |
+
"Stanford_dogs": [
|
| 36 |
+
"base_200",
|
| 37 |
+
"base_200+100",
|
| 38 |
+
"synthetic_200",
|
| 39 |
+
"augment_noisy_200",
|
| 40 |
+
"augment_noisy_200+100",
|
| 41 |
+
],
|
| 42 |
+
}
|
| 43 |
+
|
| 44 |
+
model_arch = ["resnet18", "mobilenet_v2"]
|
| 45 |
+
|
| 46 |
+
list_200 = [
|
| 47 |
+
"Original",
|
| 48 |
+
"Synthetic",
|
| 49 |
+
"Original + Synthetic (Noisy)",
|
| 50 |
+
"Original + Synthetic (Clean)",
|
| 51 |
+
]
|
| 52 |
+
|
| 53 |
+
list_200_100 = ["Base+100", "AugmentNoisy+100"]
|
| 54 |
+
|
| 55 |
+
methods_map = {
|
| 56 |
+
"200 Epochs": list_200,
|
| 57 |
+
"200 Epochs on Original + 100": list_200_100,
|
| 58 |
+
}
|
| 59 |
+
|
| 60 |
+
label_map = dict()
|
| 61 |
+
label_map["Imagenette (10 classes)"] = "Imagenette"
|
| 62 |
+
label_map["Imagewoof (10 classes)"] = "Imagewoof"
|
| 63 |
+
label_map["Stanford Dogs (120 classes)"] = "Stanford_dogs"
|
| 64 |
+
label_map["ResNet-18"] = "resnet18"
|
| 65 |
+
label_map["MobileNetV2"] = "mobilenet_v2"
|
| 66 |
+
label_map["200 Epochs"] = "200"
|
| 67 |
+
label_map["200 Epochs on Original + 100"] = "200+100"
|
| 68 |
+
label_map["Original"] = "base"
|
| 69 |
+
label_map["Synthetic"] = "synthetic"
|
| 70 |
+
label_map["Original + Synthetic (Noisy)"] = "augment_noisy"
|
| 71 |
+
label_map["Original + Synthetic (Clean)"] = "augment_clean"
|
| 72 |
+
label_map["Base+100"] = "base"
|
| 73 |
+
label_map["AugmentNoisy+100"] = "augment_noisy"
|
| 74 |
+
|
| 75 |
+
dataset_models = dict()
|
| 76 |
+
for dataset, n_classes in datasets_n_classes.items():
|
| 77 |
+
models = dict()
|
| 78 |
+
for model_type in datasets_model_types[dataset]:
|
| 79 |
+
for arch in model_arch:
|
| 80 |
+
if arch == "resnet18":
|
| 81 |
+
model = resnet18(weights=None, num_classes=n_classes)
|
| 82 |
+
models[f"{arch}_{model_type}"] = (
|
| 83 |
+
model,
|
| 84 |
+
f"./models/{arch}/{dataset}/{dataset}_{model_type}.pth",
|
| 85 |
+
)
|
| 86 |
+
elif arch == "mobilenet_v2":
|
| 87 |
+
model = mobilenet_v2(weights=None, num_classes=n_classes)
|
| 88 |
+
models[f"{arch}_{model_type}"] = (
|
| 89 |
+
model,
|
| 90 |
+
f"./models/{arch}/{dataset}/{dataset}_{model_type}.pth",
|
| 91 |
+
)
|
| 92 |
+
else:
|
| 93 |
+
raise ValueError(f"Model architecture unavailable: {arch}")
|
| 94 |
+
dataset_models[dataset] = models
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
def get_random_image(dataset, label_map=label_map) -> Image:
|
| 98 |
+
dataset_root = f"./data/{label_map[dataset]}/val"
|
| 99 |
+
dataset_img = torchvision.datasets.ImageFolder(
|
| 100 |
+
dataset_root,
|
| 101 |
+
transforms.Compose([transforms.PILToTensor()]),
|
| 102 |
+
)
|
| 103 |
+
random_idx = random.randint(0, len(dataset_img) - 1)
|
| 104 |
+
image, _ = dataset_img[random_idx]
|
| 105 |
+
image = transforms.ToPILImage()(image)
|
| 106 |
+
image = image.resize(
|
| 107 |
+
(256, 256),
|
| 108 |
+
)
|
| 109 |
+
return image
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
def load_model(model_dict, model_name: str) -> nn.Module:
|
| 113 |
+
model_name_lower = model_name.lower()
|
| 114 |
+
if model_name_lower in model_dict:
|
| 115 |
+
model = model_dict[model_name_lower][0]
|
| 116 |
+
model_path = model_dict[model_name_lower][1]
|
| 117 |
+
checkpoint = torch.load(model_path)
|
| 118 |
+
if "setup" in checkpoint:
|
| 119 |
+
if checkpoint["setup"]["distributed"]:
|
| 120 |
+
torch.nn.modules.utils.consume_prefix_in_state_dict_if_present(
|
| 121 |
+
checkpoint["model"], "module."
|
| 122 |
+
)
|
| 123 |
+
model.load_state_dict(checkpoint["model"])
|
| 124 |
+
else:
|
| 125 |
+
model.load_state_dict(checkpoint)
|
| 126 |
+
return model
|
| 127 |
+
else:
|
| 128 |
+
raise ValueError(
|
| 129 |
+
f"Model {model_name} is not available for image prediction. Please choose from {[name.capitalize() for name in model_dict.keys()]}."
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
def postprocess_default(labels, output) -> dict:
|
| 134 |
+
probabilities = nn.functional.softmax(output[0], dim=0)
|
| 135 |
+
top_prob, top_catid = torch.topk(probabilities, 5)
|
| 136 |
+
confidences = {
|
| 137 |
+
labels[top_catid.tolist()[i]]: top_prob.tolist()[i]
|
| 138 |
+
for i in range(top_prob.shape[0])
|
| 139 |
+
}
|
| 140 |
+
return confidences
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
def classify(
|
| 144 |
+
input_image: Image,
|
| 145 |
+
dataset_type: str,
|
| 146 |
+
arch_type: str,
|
| 147 |
+
methods: str,
|
| 148 |
+
training_ds: str,
|
| 149 |
+
dataset_models=dataset_models,
|
| 150 |
+
label_map=label_map,
|
| 151 |
+
) -> dict:
|
| 152 |
+
for i in [dataset_type, arch_type, methods, training_ds]:
|
| 153 |
+
if i is None:
|
| 154 |
+
raise ValueError("Please select all options.")
|
| 155 |
+
dataset_type = label_map[dataset_type]
|
| 156 |
+
arch_type = label_map[arch_type]
|
| 157 |
+
methods = label_map[methods]
|
| 158 |
+
training_ds = label_map[training_ds]
|
| 159 |
+
preprocess_input = transforms.Compose(
|
| 160 |
+
[
|
| 161 |
+
transforms.Resize(
|
| 162 |
+
256,
|
| 163 |
+
interpolation=InterpolationMode.BILINEAR,
|
| 164 |
+
antialias=True,
|
| 165 |
+
),
|
| 166 |
+
transforms.CenterCrop(224),
|
| 167 |
+
transforms.ToTensor(),
|
| 168 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
| 169 |
+
]
|
| 170 |
+
)
|
| 171 |
+
if input_image is None:
|
| 172 |
+
raise ValueError("No image was provided.")
|
| 173 |
+
input_tensor: torch.Tensor = preprocess_input(input_image)
|
| 174 |
+
input_batch = input_tensor.unsqueeze(0)
|
| 175 |
+
model = load_model(
|
| 176 |
+
dataset_models[dataset_type], f"{arch_type}_{training_ds}_{methods}"
|
| 177 |
+
)
|
| 178 |
+
|
| 179 |
+
if torch.cuda.is_available():
|
| 180 |
+
input_batch = input_batch.to("cuda")
|
| 181 |
+
model.to("cuda")
|
| 182 |
+
|
| 183 |
+
model.eval()
|
| 184 |
+
with torch.inference_mode():
|
| 185 |
+
output: torch.Tensor = model(input_batch)
|
| 186 |
+
with open(f"./data/{dataset_type}.txt", "r") as f:
|
| 187 |
+
labels = {i: line.strip() for i, line in enumerate(f.readlines())}
|
| 188 |
+
return postprocess_default(labels, output)
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
def update_methods(method, ds_type):
|
| 192 |
+
if ds_type == "Stanford Dogs (120 classes)" and method == "200 Epochs":
|
| 193 |
+
methods = list_200[:-1]
|
| 194 |
+
else:
|
| 195 |
+
methods = methods_map[method]
|
| 196 |
+
return gr.update(choices=methods, value=None)
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
def downloadModel(
|
| 200 |
+
dataset_type, arch_type, methods, training_ds, dataset_models=dataset_models
|
| 201 |
+
):
|
| 202 |
+
for i in [dataset_type, arch_type, methods, training_ds]:
|
| 203 |
+
if i is None:
|
| 204 |
+
return gr.update(label="Select Model", value=None)
|
| 205 |
+
dataset_type = label_map[dataset_type]
|
| 206 |
+
arch_type = label_map[arch_type]
|
| 207 |
+
methods = label_map[methods]
|
| 208 |
+
training_ds = label_map[training_ds]
|
| 209 |
+
if f"{arch_type}_{training_ds}_{methods}" not in dataset_models[dataset_type]:
|
| 210 |
+
return gr.update(label="Select Model", value=None)
|
| 211 |
+
model_path = dataset_models[dataset_type][f"{arch_type}_{training_ds}_{methods}"][1]
|
| 212 |
+
return gr.update(
|
| 213 |
+
label=f"Download Model: '{dataset_type}_{arch_type}_{training_ds}_{methods}'",
|
| 214 |
+
value=model_path,
|
| 215 |
+
)
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
if __name__ == "__main__":
|
| 219 |
+
with gr.Blocks(title="Generative Augmented Image Classifiers") as demo:
|
| 220 |
+
gr.Markdown(
|
| 221 |
+
"""
|
| 222 |
+
# Generative Augmented Image Classifiers
|
| 223 |
+
This demo showcases the performance of image classifiers trained on various datasets.
|
| 224 |
+
"""
|
| 225 |
+
)
|
| 226 |
+
with gr.Row():
|
| 227 |
+
with gr.Column():
|
| 228 |
+
dataset_type = gr.Radio(
|
| 229 |
+
choices=[
|
| 230 |
+
"Imagenette (10 classes)",
|
| 231 |
+
"Imagewoof (10 classes)",
|
| 232 |
+
"Stanford Dogs (120 classes)",
|
| 233 |
+
],
|
| 234 |
+
label="Dataset",
|
| 235 |
+
value="Imagenette (10 classes)",
|
| 236 |
+
)
|
| 237 |
+
arch_type = gr.Radio(
|
| 238 |
+
choices=["ResNet-18", "MobileNetV2"],
|
| 239 |
+
label="Model Architecture",
|
| 240 |
+
value="ResNet-18",
|
| 241 |
+
interactive=True,
|
| 242 |
+
)
|
| 243 |
+
methods = gr.Radio(
|
| 244 |
+
label="Methods",
|
| 245 |
+
choices=["200 Epochs", "200 Epochs on Original + 100"],
|
| 246 |
+
interactive=True,
|
| 247 |
+
value="200 Epochs",
|
| 248 |
+
)
|
| 249 |
+
training_ds = gr.Radio(
|
| 250 |
+
label="Training Dataset",
|
| 251 |
+
choices=methods_map["200 Epochs"],
|
| 252 |
+
interactive=True,
|
| 253 |
+
value="Original",
|
| 254 |
+
)
|
| 255 |
+
dataset_type.change(
|
| 256 |
+
fn=update_methods,
|
| 257 |
+
inputs=[methods, dataset_type],
|
| 258 |
+
outputs=[training_ds],
|
| 259 |
+
)
|
| 260 |
+
methods.change(
|
| 261 |
+
fn=update_methods,
|
| 262 |
+
inputs=[methods, dataset_type],
|
| 263 |
+
outputs=[training_ds],
|
| 264 |
+
)
|
| 265 |
+
generate_button = gr.Button("Sample Random Image")
|
| 266 |
+
random_image_output = gr.Image(
|
| 267 |
+
type="pil", label="Random Image from Validation Set"
|
| 268 |
+
)
|
| 269 |
+
classify_button_random = gr.Button("Classify")
|
| 270 |
+
with gr.Column():
|
| 271 |
+
output_label_random = gr.Label(num_top_classes=5)
|
| 272 |
+
download_model = gr.DownloadButton(
|
| 273 |
+
label=f"Download Model: '{label_map[dataset_type.value]}_{label_map[arch_type.value]}_{label_map[training_ds.value]}_{label_map[methods.value]}'",
|
| 274 |
+
value=dataset_models[label_map[dataset_type.value]][
|
| 275 |
+
f"{label_map[arch_type.value]}_{label_map[training_ds.value]}_{label_map[methods.value]}"
|
| 276 |
+
][1],
|
| 277 |
+
)
|
| 278 |
+
dataset_type.change(
|
| 279 |
+
fn=downloadModel,
|
| 280 |
+
inputs=[dataset_type, arch_type, methods, training_ds],
|
| 281 |
+
outputs=[download_model],
|
| 282 |
+
)
|
| 283 |
+
arch_type.change(
|
| 284 |
+
fn=downloadModel,
|
| 285 |
+
inputs=[dataset_type, arch_type, methods, training_ds],
|
| 286 |
+
outputs=[download_model],
|
| 287 |
+
)
|
| 288 |
+
methods.change(
|
| 289 |
+
fn=downloadModel,
|
| 290 |
+
inputs=[dataset_type, arch_type, methods, training_ds],
|
| 291 |
+
outputs=[download_model],
|
| 292 |
+
)
|
| 293 |
+
training_ds.change(
|
| 294 |
+
fn=downloadModel,
|
| 295 |
+
inputs=[dataset_type, arch_type, methods, training_ds],
|
| 296 |
+
outputs=[download_model],
|
| 297 |
+
)
|
| 298 |
+
|
| 299 |
+
generate_button.click(
|
| 300 |
+
get_random_image,
|
| 301 |
+
inputs=[dataset_type],
|
| 302 |
+
outputs=random_image_output,
|
| 303 |
+
)
|
| 304 |
+
classify_button_random.click(
|
| 305 |
+
classify,
|
| 306 |
+
inputs=[random_image_output, dataset_type, arch_type, methods, training_ds],
|
| 307 |
+
outputs=output_label_random,
|
| 308 |
+
)
|
| 309 |
+
demo.launch(show_error=True)
|
data/Imagenette.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
tench, Tinca tinca
|
| 2 |
+
English springer, English springer spaniel
|
| 3 |
+
cassette player
|
| 4 |
+
chain saw, chainsaw
|
| 5 |
+
church, church building
|
| 6 |
+
French horn, horn
|
| 7 |
+
garbage truck, dustcart
|
| 8 |
+
gas pump, gasoline pump, petrol pump, island dispenser
|
| 9 |
+
golf ball
|
| 10 |
+
parachute, chute
|
data/Imagenette/val/n01440764/ILSVRC2012_val_00009111.JPEG
ADDED
|
|
data/Imagenette/val/n01440764/ILSVRC2012_val_00009191.JPEG
ADDED
|
|
data/Imagenette/val/n02102040/ILSVRC2012_val_00004650.JPEG
ADDED
|
|
data/Imagenette/val/n02102040/ILSVRC2012_val_00007032.JPEG
ADDED
|
|
data/Imagenette/val/n02979186/ILSVRC2012_val_00008651.JPEG
ADDED
|
|
data/Imagenette/val/n02979186/ILSVRC2012_val_00020400.JPEG
ADDED
|
|
data/Imagenette/val/n03000684/ILSVRC2012_val_00004262.JPEG
ADDED
|
|
data/Imagenette/val/n03000684/ILSVRC2012_val_00007460.JPEG
ADDED
|
|
data/Imagenette/val/n03028079/ILSVRC2012_val_00003351.JPEG
ADDED
|
|
data/Imagenette/val/n03028079/ILSVRC2012_val_00003682.JPEG
ADDED
|
|
data/Imagenette/val/n03394916/ILSVRC2012_val_00001492.JPEG
ADDED
|
|
data/Imagenette/val/n03394916/ILSVRC2012_val_00003620.JPEG
ADDED
|
|
data/Imagenette/val/n03417042/ILSVRC2012_val_00002210.JPEG
ADDED
|
|
data/Imagenette/val/n03417042/ILSVRC2012_val_00006922.JPEG
ADDED
|
|
data/Imagenette/val/n03425413/ILSVRC2012_val_00000732.JPEG
ADDED
|
|
data/Imagenette/val/n03425413/ILSVRC2012_val_00001432.JPEG
ADDED
|
|
data/Imagenette/val/n03445777/ILSVRC2012_val_00008161.JPEG
ADDED
|
|
data/Imagenette/val/n03445777/ILSVRC2012_val_00009902.JPEG
ADDED
|
|
data/Imagenette/val/n03888257/ILSVRC2012_val_00001440.JPEG
ADDED
|
|
data/Imagenette/val/n03888257/ILSVRC2012_val_00002990.JPEG
ADDED
|
|
data/Imagewoof.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Shih-Tzu
|
| 2 |
+
Rhodesian ridgeback
|
| 3 |
+
beagle
|
| 4 |
+
English foxhound
|
| 5 |
+
Border terrier
|
| 6 |
+
Australian terrier
|
| 7 |
+
golden retriever
|
| 8 |
+
Old English sheepdog, bobtail
|
| 9 |
+
Samoyed, Samoyede
|
| 10 |
+
dingo, warrigal, warragal, Canis dingo
|
data/Imagewoof/val/n02086240/ILSVRC2012_val_00002701.JPEG
ADDED
|
|
data/Imagewoof/val/n02086240/ILSVRC2012_val_00003841.JPEG
ADDED
|
|
data/Imagewoof/val/n02087394/ILSVRC2012_val_00000102.JPEG
ADDED
|
|
data/Imagewoof/val/n02087394/ILSVRC2012_val_00001651.JPEG
ADDED
|
|
data/Imagewoof/val/n02088364/ILSVRC2012_val_00005291.JPEG
ADDED
|
|
data/Imagewoof/val/n02088364/ILSVRC2012_val_00005922.JPEG
ADDED
|
|
data/Imagewoof/val/n02089973/ILSVRC2012_val_00003671.JPEG
ADDED
|
|
data/Imagewoof/val/n02089973/ILSVRC2012_val_00007850.JPEG
ADDED
|
|
data/Imagewoof/val/n02093754/ILSVRC2012_val_00000832.JPEG
ADDED
|
|
data/Imagewoof/val/n02093754/ILSVRC2012_val_00004511.JPEG
ADDED
|
|
data/Imagewoof/val/n02096294/ILSVRC2012_val_00003690.JPEG
ADDED
|
|
data/Imagewoof/val/n02096294/ILSVRC2012_val_00009052.JPEG
ADDED
|
|
data/Imagewoof/val/n02099601/ILSVRC2012_val_00001112.JPEG
ADDED
|
|
data/Imagewoof/val/n02099601/ILSVRC2012_val_00001191.JPEG
ADDED
|
|
data/Imagewoof/val/n02105641/ILSVRC2012_val_00004361.JPEG
ADDED
|
|
data/Imagewoof/val/n02105641/ILSVRC2012_val_00005390.JPEG
ADDED
|
|
data/Imagewoof/val/n02111889/ILSVRC2012_val_00000590.JPEG
ADDED
|
|
data/Imagewoof/val/n02111889/ILSVRC2012_val_00003490.JPEG
ADDED
|
|
data/Imagewoof/val/n02115641/ILSVRC2012_val_00001212.JPEG
ADDED
|
|
data/Imagewoof/val/n02115641/ILSVRC2012_val_00004320.JPEG
ADDED
|
|
data/Stanford_dogs.txt
ADDED
|
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Chihuahua
|
| 2 |
+
Japanese spaniel
|
| 3 |
+
Maltese dog
|
| 4 |
+
Pekinese
|
| 5 |
+
Shih Tzu
|
| 6 |
+
Blenheim spaniel
|
| 7 |
+
papillon
|
| 8 |
+
toy terrier
|
| 9 |
+
Rhodesian ridgeback
|
| 10 |
+
Afghan hound
|
| 11 |
+
basset
|
| 12 |
+
beagle
|
| 13 |
+
bloodhound
|
| 14 |
+
bluetick
|
| 15 |
+
black and tan coonhound
|
| 16 |
+
Walker hound
|
| 17 |
+
English foxhound
|
| 18 |
+
redbone
|
| 19 |
+
borzoi
|
| 20 |
+
Irish wolfhound
|
| 21 |
+
Italian greyhound
|
| 22 |
+
whippet
|
| 23 |
+
Ibizan hound
|
| 24 |
+
Norwegian elkhound
|
| 25 |
+
otterhound
|
| 26 |
+
Saluki
|
| 27 |
+
Scottish deerhound
|
| 28 |
+
Weimaraner
|
| 29 |
+
Staffordshire bullterrier
|
| 30 |
+
American Staffordshire terrier
|
| 31 |
+
Bedlington terrier
|
| 32 |
+
Border terrier
|
| 33 |
+
Kerry blue terrier
|
| 34 |
+
Irish terrier
|
| 35 |
+
Norfolk terrier
|
| 36 |
+
Norwich terrier
|
| 37 |
+
Yorkshire terrier
|
| 38 |
+
wire haired fox terrier
|
| 39 |
+
Lakeland terrier
|
| 40 |
+
Sealyham terrier
|
| 41 |
+
Airedale
|
| 42 |
+
cairn
|
| 43 |
+
Australian terrier
|
| 44 |
+
Dandie Dinmont
|
| 45 |
+
Boston bull
|
| 46 |
+
miniature schnauzer
|
| 47 |
+
giant schnauzer
|
| 48 |
+
standard schnauzer
|
| 49 |
+
Scotch terrier
|
| 50 |
+
Tibetan terrier
|
| 51 |
+
silky terrier
|
| 52 |
+
soft coated wheaten terrier
|
| 53 |
+
West Highland white terrier
|
| 54 |
+
Lhasa
|
| 55 |
+
flat coated retriever
|
| 56 |
+
curly coated retriever
|
| 57 |
+
golden retriever
|
| 58 |
+
Labrador retriever
|
| 59 |
+
Chesapeake Bay retriever
|
| 60 |
+
German short haired pointer
|
| 61 |
+
vizsla
|
| 62 |
+
English setter
|
| 63 |
+
Irish setter
|
| 64 |
+
Gordon setter
|
| 65 |
+
Brittany spaniel
|
| 66 |
+
clumber
|
| 67 |
+
English springer
|
| 68 |
+
Welsh springer spaniel
|
| 69 |
+
cocker spaniel
|
| 70 |
+
Sussex spaniel
|
| 71 |
+
Irish water spaniel
|
| 72 |
+
kuvasz
|
| 73 |
+
schipperke
|
| 74 |
+
groenendael
|
| 75 |
+
malinois
|
| 76 |
+
briard
|
| 77 |
+
kelpie
|
| 78 |
+
komondor
|
| 79 |
+
Old English sheepdog
|
| 80 |
+
Shetland sheepdog
|
| 81 |
+
collie
|
| 82 |
+
Border collie
|
| 83 |
+
Bouvier des Flandres
|
| 84 |
+
Rottweiler
|
| 85 |
+
German shepherd
|
| 86 |
+
Doberman
|
| 87 |
+
miniature pinscher
|
| 88 |
+
Greater Swiss Mountain dog
|
| 89 |
+
Bernese mountain dog
|
| 90 |
+
Appenzeller
|
| 91 |
+
EntleBucher
|
| 92 |
+
boxer
|
| 93 |
+
bull mastiff
|
| 94 |
+
Tibetan mastiff
|
| 95 |
+
French bulldog
|
| 96 |
+
Great Dane
|
| 97 |
+
Saint Bernard
|
| 98 |
+
Eskimo dog
|
| 99 |
+
malamute
|
| 100 |
+
Siberian husky
|
| 101 |
+
affenpinscher
|
| 102 |
+
basenji
|
| 103 |
+
pug
|
| 104 |
+
Leonberg
|
| 105 |
+
Newfoundland
|
| 106 |
+
Great Pyrenees
|
| 107 |
+
Samoyed
|
| 108 |
+
Pomeranian
|
| 109 |
+
chow
|
| 110 |
+
keeshond
|
| 111 |
+
Brabancon griffon
|
| 112 |
+
Pembroke
|
| 113 |
+
Cardigan
|
| 114 |
+
toy poodle
|
| 115 |
+
miniature poodle
|
| 116 |
+
standard poodle
|
| 117 |
+
Mexican hairless
|
| 118 |
+
dingo
|
| 119 |
+
dhole
|
| 120 |
+
African hunting dog
|
data/Stanford_dogs/val/n02085620-Chihuahua/n02085620_10074.jpg
ADDED
|
data/Stanford_dogs/val/n02085620-Chihuahua/n02085620_10131.jpg
ADDED
|
data/Stanford_dogs/val/n02085782-Japanese_spaniel/n02085782_1039.jpg
ADDED
|
data/Stanford_dogs/val/n02085782-Japanese_spaniel/n02085782_1058.jpg
ADDED
|