# app.py from ultralytics import YOLO # RUN BELOW FIRST THEN RUN BELOW # First run the code to get the validation metrics of best.pt #model_path = "best.pt" # your trained model and use exact file location #data_yaml_path = "data.yaml" # dataset configuration file and use exact data.yaml file location #model = YOLO(model_path) #metrics = model.val(data=data_yaml_path) # ensure data.yaml points to the correct valid set # Extract overall metrics #overall_precision = metrics.box.mp # mean precision over all classes #overall_recall = metrics.box.mr # mean recall over all classes #overall_map50 = metrics.box.map50 # mean AP at IoU=0.5 over all classes #overall_map = metrics.box.map # mean AP at IoU=0.5:0.95 over all classes #overall_map75 = metrics.box.map75 # mean AP at IoU=0.75 over all classes # Extract per-class metrics #class_names = model.names # or load from data.yaml if needed, same as model.names #class_metrics = [] #for i, cname in enumerate(class_names): # p, r, ap50, ap = metrics.box.class_result(i) # class_metrics.append((cname, p, r, ap50, ap)) #print("Overall Metrics:") #print(f"Precision: {overall_precision}") #print(f"Recall: {overall_recall}") #print(f"mAP50: {overall_map50}") #print(f"mAP50-95: {overall_map}") #print(f"mAP75: {overall_map75}") #print("\nPer-Class Metrics:") #for (cname, p, r, ap50, ap) in class_metrics: # print(f"{cname}: Precision={p}, Recall={r}, mAP50={ap50}, mAP50-95={ap}") ## End of Validation ############ Take the values from abover and put them below manually ############## Use below for production with manual metrics input import os import torch import cv2 import numpy as np from ultralytics import YOLO from PIL import Image import yaml import gradio as gr import pandas as pd model_path = "best.pt" data_yaml_path = "data.yaml" if not os.path.exists(model_path): raise FileNotFoundError(f"Model file not found at {model_path}.") if not os.path.exists(data_yaml_path): raise FileNotFoundError(f"data.yaml not found at {data_yaml_path}.") # Load the YOLO model model = YOLO(model_path) # Load class names with open(data_yaml_path, 'r') as stream: data_dict = yaml.safe_load(stream) class_names = data_dict['names'] # e.g., ['Platelets', 'RBC', 'WBC'] if those are your classes ################################## # Hardcoded metrics from your provided values: overall_precision = 0.8998657967724281 overall_recall = 0.9152413015416975 overall_map50 = 0.9482967626275897 overall_map = 0.6529025986330599 overall_map75 = 0.7199225312247104 # Per-Class Metrics (index as per data.yaml order) # Here we assume the class order matches the indices: # class_names[0], class_names[1], class_names[2], etc. class0_precision = 0.8820047185253768 class0_recall = 0.958904109589041 class0_map50 = 0.961433378998409 class0_map = 0.5023530432704303 class1_precision = 0.8196728808767741 class1_recall = 0.7868197950360514 class1_map50 = 0.8884569088843599 class1_map = 0.6302822447945686 class2_precision = 0.9979197909151334 class2_recall = 1.0 class2_map50 = 0.995 class2_map = 0.8260725078341811 # Construct the metrics DataFrame metrics_data = [ ["Overall", overall_precision, overall_recall, overall_map50, overall_map], [class_names[0], class0_precision, class0_recall, class0_map50, class0_map], [class_names[1], class1_precision, class1_recall, class1_map50, class1_map], [class_names[2], class2_precision, class2_recall, class2_map50, class2_map] ] metrics_df = pd.DataFrame(metrics_data, columns=["Class", "Precision", "Recall", "mAP50", "mAP50-95"]) ################################## def run_inference(img: np.ndarray, model): img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) results = model.predict(img_rgb, conf=0.25, iou=0.6) detections = [] res = results[0] boxes = res.boxes if boxes is not None and len(boxes) > 0: for i in range(len(boxes)): xyxy = boxes.xyxy[i].tolist() conf = float(boxes.conf[i]) cls_idx = int(boxes.cls[i]) class_name = class_names[cls_idx] detections.append([class_name, conf, *xyxy]) return detections def draw_boxes(image: np.ndarray, detections): # Define a color palette for classes (BGR) palette = [ (0, 255, 0), # Green (255, 0, 0), # Blue (0, 0, 255), # Red (255, 255, 0), # Cyan (255, 0, 255), # Magenta (0, 255, 255), # Yellow (128, 0, 128), # Purple (128, 128, 0), # Olive (0, 128, 128), # Teal ] num_colors = len(palette) for det in detections: class_name, conf, x1, y1, x2, y2 = det cls_idx = class_names.index(class_name) color = palette[cls_idx % num_colors] cv2.rectangle(image, (int(x1), int(y1)), (int(x2), int(y2)), color, 2) # Text settings label = f"{class_name} {conf:.2f}" font = cv2.FONT_HERSHEY_SIMPLEX font_scale = 0.8 thickness = 2 (tw, th), _ = cv2.getTextSize(label, font, font_scale, thickness) # Draw filled rectangle behind text cv2.rectangle(image, (int(x1), int(y1)-th-8), (int(x1)+tw, int(y1)), color, -1) # Put text in white for visibility cv2.putText(image, label, (int(x1), int(y1)-5), font, font_scale, (255, 255, 255), thickness, cv2.LINE_AA) return image def process_image(image): img = np.array(image) img_bgr = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) detections = run_inference(img_bgr, model) annotated_img = draw_boxes(img_bgr.copy(), detections) annotated_img_rgb = cv2.cvtColor(annotated_img, cv2.COLOR_BGR2RGB) det_df = pd.DataFrame(detections, columns=["Class", "Confidence", "x1", "y1", "x2", "y2"]) # Return annotated image, detection results, and hardcoded metrics table return Image.fromarray(annotated_img_rgb), det_df, metrics_df with gr.Blocks() as demo: gr.Markdown("# YOLOn11 Cell Detection Web App") gr.Markdown("Upload an image and the model will return bounding boxes, classes, and confidence scores.") gr.Markdown("Metrics shown below are pre-computed and hardcoded into the code.") with gr.Row(): with gr.Column(): input_image = gr.Image(type="pil", label="Upload Image") submit_btn = gr.Button("Run Inference") with gr.Column(): output_image = gr.Image(type="pil", label="Annotated Image") det_results = gr.DataFrame(label="Detection Results") metrics_table = gr.DataFrame(value=metrics_df, label="Validation Metrics") submit_btn.click(fn=process_image, inputs=input_image, outputs=[output_image, det_results, metrics_table]) demo.launch()