File size: 6,759 Bytes
cdd6174
e44d1ed
 
 
bf2eb71
 
 
 
 
 
e44d1ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf2eb71
e44d1ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5bb4908
 
 
 
 
e44d1ed
 
 
 
5bb4908
 
 
 
 
 
 
 
 
 
 
 
 
 
e44d1ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0560d1d
e44d1ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
# app.py

from ultralytics import YOLO

# RUN BELOW FIRST THEN RUN BELOW

# First run the code to get the validation metrics of best.pt

#model_path = "best.pt"  # your trained model and use exact file location
#data_yaml_path = "data.yaml"  # dataset configuration file and use exact data.yaml file location

#model = YOLO(model_path)
#metrics = model.val(data=data_yaml_path)  # ensure data.yaml points to the correct valid set

# Extract overall metrics
#overall_precision = metrics.box.mp       # mean precision over all classes
#overall_recall = metrics.box.mr          # mean recall over all classes
#overall_map50 = metrics.box.map50        # mean AP at IoU=0.5 over all classes
#overall_map = metrics.box.map            # mean AP at IoU=0.5:0.95 over all classes
#overall_map75 = metrics.box.map75        # mean AP at IoU=0.75 over all classes

# Extract per-class metrics
#class_names = model.names  # or load from data.yaml if needed, same as model.names
#class_metrics = []
#for i, cname in enumerate(class_names):
#    p, r, ap50, ap = metrics.box.class_result(i)
#    class_metrics.append((cname, p, r, ap50, ap))

#print("Overall Metrics:")
#print(f"Precision: {overall_precision}")
#print(f"Recall: {overall_recall}")
#print(f"mAP50: {overall_map50}")
#print(f"mAP50-95: {overall_map}")
#print(f"mAP75: {overall_map75}")
#print("\nPer-Class Metrics:")
#for (cname, p, r, ap50, ap) in class_metrics:
#    print(f"{cname}: Precision={p}, Recall={r}, mAP50={ap50}, mAP50-95={ap}")


## End of Validation

############ Take the values from abover and put them below manually

############## Use below for production with manual metrics input

import os
import torch
import cv2
import numpy as np
from ultralytics import YOLO
from PIL import Image
import yaml
import gradio as gr
import pandas as pd

model_path = "best.pt"
data_yaml_path = "data.yaml"

if not os.path.exists(model_path):
    raise FileNotFoundError(f"Model file not found at {model_path}.")
if not os.path.exists(data_yaml_path):
    raise FileNotFoundError(f"data.yaml not found at {data_yaml_path}.")

# Load the YOLO model
model = YOLO(model_path)

# Load class names
with open(data_yaml_path, 'r') as stream:
    data_dict = yaml.safe_load(stream)
class_names = data_dict['names']  # e.g., ['Platelets', 'RBC', 'WBC'] if those are your classes

##################################
# Hardcoded metrics from your provided values:
overall_precision = 0.8998657967724281
overall_recall = 0.9152413015416975
overall_map50 = 0.9482967626275897
overall_map = 0.6529025986330599
overall_map75 = 0.7199225312247104

# Per-Class Metrics (index as per data.yaml order)
# Here we assume the class order matches the indices: 
# class_names[0], class_names[1], class_names[2], etc.
class0_precision = 0.8820047185253768
class0_recall = 0.958904109589041
class0_map50 = 0.961433378998409
class0_map = 0.5023530432704303

class1_precision = 0.8196728808767741
class1_recall = 0.7868197950360514
class1_map50 = 0.8884569088843599
class1_map = 0.6302822447945686

class2_precision = 0.9979197909151334
class2_recall = 1.0
class2_map50 = 0.995
class2_map = 0.8260725078341811

# Construct the metrics DataFrame
metrics_data = [
    ["Overall", overall_precision, overall_recall, overall_map50, overall_map],
    [class_names[0], class0_precision, class0_recall, class0_map50, class0_map],
    [class_names[1], class1_precision, class1_recall, class1_map50, class1_map],
    [class_names[2], class2_precision, class2_recall, class2_map50, class2_map]
]
metrics_df = pd.DataFrame(metrics_data, columns=["Class", "Precision", "Recall", "mAP50", "mAP50-95"])
##################################

def run_inference(img: np.ndarray, model):
    img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    results = model.predict(img_rgb, conf=0.25, iou=0.6)
    detections = []
    res = results[0]
    boxes = res.boxes
    if boxes is not None and len(boxes) > 0:
        for i in range(len(boxes)):
            xyxy = boxes.xyxy[i].tolist()
            conf = float(boxes.conf[i])
            cls_idx = int(boxes.cls[i])
            class_name = class_names[cls_idx]
            detections.append([class_name, conf, *xyxy])
    return detections

def draw_boxes(image: np.ndarray, detections):
    # Define a color palette for classes (BGR)
    palette = [
        (0, 255, 0),    # Green
        (255, 0, 0),    # Blue
        (0, 0, 255),    # Red
        (255, 255, 0),  # Cyan
        (255, 0, 255),  # Magenta
        (0, 255, 255),  # Yellow
        (128, 0, 128),  # Purple
        (128, 128, 0),  # Olive
        (0, 128, 128),  # Teal
    ]
    num_colors = len(palette)

    for det in detections:
        class_name, conf, x1, y1, x2, y2 = det
        cls_idx = class_names.index(class_name)
        color = palette[cls_idx % num_colors]

        cv2.rectangle(image, (int(x1), int(y1)), (int(x2), int(y2)), color, 2)

        # Text settings
        label = f"{class_name} {conf:.2f}"
        font = cv2.FONT_HERSHEY_SIMPLEX
        font_scale = 0.8
        thickness = 2

        (tw, th), _ = cv2.getTextSize(label, font, font_scale, thickness)
        # Draw filled rectangle behind text
        cv2.rectangle(image, (int(x1), int(y1)-th-8), (int(x1)+tw, int(y1)), color, -1)
        # Put text in white for visibility
        cv2.putText(image, label, (int(x1), int(y1)-5), font, font_scale, (255, 255, 255), thickness, cv2.LINE_AA)

    return image

def process_image(image):
    img = np.array(image)
    img_bgr = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)

    detections = run_inference(img_bgr, model)

    annotated_img = draw_boxes(img_bgr.copy(), detections)
    annotated_img_rgb = cv2.cvtColor(annotated_img, cv2.COLOR_BGR2RGB)

    det_df = pd.DataFrame(detections, columns=["Class", "Confidence", "x1", "y1", "x2", "y2"])

    # Return annotated image, detection results, and hardcoded metrics table
    return Image.fromarray(annotated_img_rgb), det_df, metrics_df

with gr.Blocks() as demo:
    gr.Markdown("# YOLOn11 Cell Detection Web App")
    gr.Markdown("Upload an image and the model will return bounding boxes, classes, and confidence scores.")
    gr.Markdown("Metrics shown below are pre-computed and hardcoded into the code.")

    with gr.Row():
        with gr.Column():
            input_image = gr.Image(type="pil", label="Upload Image")
            submit_btn = gr.Button("Run Inference")
        with gr.Column():
            output_image = gr.Image(type="pil", label="Annotated Image")
            det_results = gr.DataFrame(label="Detection Results")
            metrics_table = gr.DataFrame(value=metrics_df, label="Validation Metrics")

    submit_btn.click(fn=process_image, inputs=input_image, outputs=[output_image, det_results, metrics_table])

demo.launch()