Upload 3 files
Browse files- best.pt +3 -0
- main.py +89 -0
- requirements.txt +6 -0
best.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9dd2707a610464e2b7c338bee1bf31cc68c76d429b52894a679078776b5c2380
|
3 |
+
size 3211515
|
main.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Partha Pratim Ray
|
2 |
+
|
3 |
+
import os
|
4 |
+
import cv2
|
5 |
+
import numpy as np
|
6 |
+
from ultralytics import YOLO
|
7 |
+
from PIL import Image
|
8 |
+
import gradio as gr
|
9 |
+
import pandas as pd
|
10 |
+
|
11 |
+
# Paths
|
12 |
+
model_path = "best.pt" # Ensure the best.pt is in the local directory or provide full path
|
13 |
+
|
14 |
+
if not os.path.exists(model_path):
|
15 |
+
raise FileNotFoundError(f"Model file not found at {model_path}.")
|
16 |
+
|
17 |
+
# Load the YOLO model
|
18 |
+
model = YOLO(model_path)
|
19 |
+
|
20 |
+
##################################
|
21 |
+
# Hardcoded metrics for classification
|
22 |
+
overall_top1_accuracy = 0.9142 # Replace with your Top-1 accuracy
|
23 |
+
overall_top5_accuracy = 0.9926 # Replace with your Top-5 accuracy
|
24 |
+
|
25 |
+
# Metrics DataFrame
|
26 |
+
metrics_data = [
|
27 |
+
["Overall Top-1 Accuracy", f"{overall_top1_accuracy * 100:.2f}%"],
|
28 |
+
["Overall Top-5 Accuracy", f"{overall_top5_accuracy * 100:.2f}%"]
|
29 |
+
]
|
30 |
+
metrics_df = pd.DataFrame(metrics_data, columns=["Metric", "Value"])
|
31 |
+
##################################
|
32 |
+
|
33 |
+
def run_inference(img: np.ndarray, model):
|
34 |
+
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
35 |
+
results = model.predict(img_rgb) # Run prediction
|
36 |
+
result_probs = results[0].probs
|
37 |
+
|
38 |
+
# Get top-1 and top-5 predictions
|
39 |
+
top1_class = result_probs.top1
|
40 |
+
top5_classes = result_probs.top5
|
41 |
+
top1_conf = result_probs.top1conf.item()
|
42 |
+
top5_conf = result_probs.top5conf
|
43 |
+
|
44 |
+
# Generate annotated image
|
45 |
+
annotated_img = results[0].plot()
|
46 |
+
|
47 |
+
# Format results
|
48 |
+
top1_result = f"Class: {model.names[top1_class]}, Confidence: {top1_conf:.2f}"
|
49 |
+
top5_results = [
|
50 |
+
f"{model.names[c]}: {conf:.2f}" for c, conf in zip(top5_classes, top5_conf)
|
51 |
+
]
|
52 |
+
|
53 |
+
return annotated_img, top1_result, top5_results
|
54 |
+
|
55 |
+
def process_image(image):
|
56 |
+
img = np.array(image)
|
57 |
+
img_bgr = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
58 |
+
|
59 |
+
# Run classification inference
|
60 |
+
annotated_img, top1_result, top5_results = run_inference(img_bgr, model)
|
61 |
+
|
62 |
+
# Convert annotated image back to PIL format
|
63 |
+
annotated_img_pil = Image.fromarray(cv2.cvtColor(annotated_img, cv2.COLOR_BGR2RGB))
|
64 |
+
|
65 |
+
# Return the annotated image, Top-1, and Top-5 predictions, along with metrics
|
66 |
+
return annotated_img_pil, f"Top-1: {top1_result}", "\n".join(top5_results), metrics_df
|
67 |
+
|
68 |
+
with gr.Blocks() as demo:
|
69 |
+
gr.Markdown("# YOLO Dog ImageWoof Classification Web App")
|
70 |
+
gr.Markdown("Upload an image, and the model will classify it and show precomputed validation metrics.")
|
71 |
+
|
72 |
+
with gr.Row():
|
73 |
+
with gr.Column():
|
74 |
+
input_image = gr.Image(type="pil", label="Upload Image")
|
75 |
+
submit_btn = gr.Button("Run Inference")
|
76 |
+
with gr.Column():
|
77 |
+
annotated_image = gr.Image(type="pil", label="Annotated Image") # Updated to show annotated image
|
78 |
+
top1_output = gr.Textbox(label="Top-1 Prediction")
|
79 |
+
top5_output = gr.Textbox(label="Top-5 Predictions")
|
80 |
+
metrics_table = gr.DataFrame(value=metrics_df, label="Validation Metrics")
|
81 |
+
|
82 |
+
submit_btn.click(
|
83 |
+
fn=process_image,
|
84 |
+
inputs=input_image,
|
85 |
+
outputs=[annotated_image, top1_output, top5_output, metrics_table]
|
86 |
+
)
|
87 |
+
|
88 |
+
demo.launch()
|
89 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy
|
2 |
+
opencv-python
|
3 |
+
Pillow
|
4 |
+
gradio
|
5 |
+
pandas
|
6 |
+
ultralytics
|