Upload app.py
Browse files
app.py
CHANGED
@@ -31,37 +31,52 @@ metrics_df = pd.DataFrame(metrics_data, columns=["Metric", "Value"])
|
|
31 |
##################################
|
32 |
|
33 |
def run_inference(img: np.ndarray, model):
|
|
|
|
|
|
|
|
|
|
|
34 |
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
35 |
-
|
|
|
|
|
|
|
|
|
36 |
result_probs = results[0].probs
|
37 |
-
|
38 |
# Get top-1 and top-5 predictions
|
39 |
top1_class = result_probs.top1
|
40 |
top5_classes = result_probs.top5
|
41 |
top1_conf = result_probs.top1conf.item()
|
42 |
top5_conf = result_probs.top5conf
|
43 |
-
|
44 |
-
# Generate annotated image
|
45 |
-
annotated_img = results[0].plot()
|
46 |
-
|
47 |
# Format results
|
48 |
top1_result = f"Class: {model.names[top1_class]}, Confidence: {top1_conf:.2f}"
|
49 |
top5_results = [
|
50 |
f"{model.names[c]}: {conf:.2f}" for c, conf in zip(top5_classes, top5_conf)
|
51 |
]
|
52 |
-
|
53 |
return annotated_img, top1_result, top5_results
|
54 |
|
55 |
def process_image(image):
|
|
|
|
|
|
|
|
|
56 |
img = np.array(image)
|
|
|
|
|
57 |
img_bgr = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
58 |
-
|
59 |
# Run classification inference
|
60 |
annotated_img, top1_result, top5_results = run_inference(img_bgr, model)
|
61 |
-
|
62 |
-
# Convert annotated image back to PIL format
|
63 |
-
annotated_img_pil = Image.fromarray(
|
64 |
-
|
65 |
# Return the annotated image, Top-1, and Top-5 predictions, along with metrics
|
66 |
return annotated_img_pil, f"Top-1: {top1_result}", "\n".join(top5_results), metrics_df
|
67 |
|
@@ -74,7 +89,7 @@ with gr.Blocks() as demo:
|
|
74 |
input_image = gr.Image(type="pil", label="Upload Image")
|
75 |
submit_btn = gr.Button("Run Inference")
|
76 |
with gr.Column():
|
77 |
-
annotated_image = gr.Image(type="pil", label="Annotated Image") #
|
78 |
top1_output = gr.Textbox(label="Top-1 Prediction")
|
79 |
top5_output = gr.Textbox(label="Top-5 Predictions")
|
80 |
metrics_table = gr.DataFrame(value=metrics_df, label="Validation Metrics")
|
|
|
31 |
##################################
|
32 |
|
33 |
def run_inference(img: np.ndarray, model):
|
34 |
+
"""
|
35 |
+
Runs inference on the input image using the YOLO model.
|
36 |
+
Returns the annotated image, Top-1 prediction, and Top-5 predictions.
|
37 |
+
"""
|
38 |
+
# Convert from BGR to RGB
|
39 |
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
40 |
+
|
41 |
+
# Run prediction
|
42 |
+
results = model.predict(img_rgb)
|
43 |
+
|
44 |
+
# Extract probabilities (if available)
|
45 |
result_probs = results[0].probs
|
46 |
+
|
47 |
# Get top-1 and top-5 predictions
|
48 |
top1_class = result_probs.top1
|
49 |
top5_classes = result_probs.top5
|
50 |
top1_conf = result_probs.top1conf.item()
|
51 |
top5_conf = result_probs.top5conf
|
52 |
+
|
53 |
+
# Generate annotated image (RGB format)
|
54 |
+
annotated_img = results[0].plot() # Assuming this returns RGB
|
55 |
+
|
56 |
# Format results
|
57 |
top1_result = f"Class: {model.names[top1_class]}, Confidence: {top1_conf:.2f}"
|
58 |
top5_results = [
|
59 |
f"{model.names[c]}: {conf:.2f}" for c, conf in zip(top5_classes, top5_conf)
|
60 |
]
|
61 |
+
|
62 |
return annotated_img, top1_result, top5_results
|
63 |
|
64 |
def process_image(image):
|
65 |
+
"""
|
66 |
+
Processes the input image, runs inference, and prepares the outputs.
|
67 |
+
"""
|
68 |
+
# Convert PIL Image to NumPy array
|
69 |
img = np.array(image)
|
70 |
+
|
71 |
+
# Convert from RGB to BGR for OpenCV (if needed by YOLO)
|
72 |
img_bgr = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
73 |
+
|
74 |
# Run classification inference
|
75 |
annotated_img, top1_result, top5_results = run_inference(img_bgr, model)
|
76 |
+
|
77 |
+
# Convert annotated image back to PIL format without altering color channels
|
78 |
+
annotated_img_pil = Image.fromarray(annotated_img) # Assuming annotated_img is in RGB
|
79 |
+
|
80 |
# Return the annotated image, Top-1, and Top-5 predictions, along with metrics
|
81 |
return annotated_img_pil, f"Top-1: {top1_result}", "\n".join(top5_results), metrics_df
|
82 |
|
|
|
89 |
input_image = gr.Image(type="pil", label="Upload Image")
|
90 |
submit_btn = gr.Button("Run Inference")
|
91 |
with gr.Column():
|
92 |
+
annotated_image = gr.Image(type="pil", label="Annotated Image") # Shows annotated image in RGB
|
93 |
top1_output = gr.Textbox(label="Top-1 Prediction")
|
94 |
top5_output = gr.Textbox(label="Top-5 Predictions")
|
95 |
metrics_table = gr.DataFrame(value=metrics_df, label="Validation Metrics")
|