Upload 4 files
Browse files
app.py
ADDED
@@ -0,0 +1,340 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
############## Use below for production with manual metrics input from above
|
2 |
+
|
3 |
+
# Partha Pratim Ray
|
4 |
+
|
5 |
+
import os
|
6 |
+
import cv2
|
7 |
+
import numpy as np
|
8 |
+
from ultralytics import YOLO
|
9 |
+
from PIL import Image
|
10 |
+
import gradio as gr
|
11 |
+
import pandas as pd
|
12 |
+
import yaml
|
13 |
+
|
14 |
+
# ---------------------
|
15 |
+
# Configuration
|
16 |
+
# ---------------------
|
17 |
+
|
18 |
+
# Paths
|
19 |
+
model_path = "best.pt" # Ensure the best.pt is in the local directory or provide full path
|
20 |
+
data_yaml_path = "data.yaml" # Ensure data.yaml is in the local directory or provide full path
|
21 |
+
|
22 |
+
# Check if required files exist
|
23 |
+
if not os.path.exists(model_path):
|
24 |
+
raise FileNotFoundError(f"Model file not found at {model_path}.")
|
25 |
+
if not os.path.exists(data_yaml_path):
|
26 |
+
raise FileNotFoundError(f"data.yaml not found at {data_yaml_path}.")
|
27 |
+
|
28 |
+
# Load the YOLO model
|
29 |
+
model = YOLO(model_path)
|
30 |
+
|
31 |
+
# Load class names from data.yaml
|
32 |
+
with open(data_yaml_path, 'r') as stream:
|
33 |
+
data_dict = yaml.safe_load(stream)
|
34 |
+
class_names = data_dict['names'] # e.g., ['Afghan_hound', 'African_hunting_dog', ...] up to 120 classes
|
35 |
+
|
36 |
+
# ---------------------
|
37 |
+
# Metrics Data
|
38 |
+
# ---------------------
|
39 |
+
|
40 |
+
# Overall Metrics
|
41 |
+
overall_metrics = {
|
42 |
+
"Class": "Overall",
|
43 |
+
"Precision": 0.7710520455384078,
|
44 |
+
"Recall": 0.7396299270284923,
|
45 |
+
"mAP50": 0.8090336605148044,
|
46 |
+
"mAP50-95": 0.7178123217082027,
|
47 |
+
"mAP75": 0.777247420215978
|
48 |
+
}
|
49 |
+
|
50 |
+
# Per-Class Metrics as a multi-line string
|
51 |
+
per_class_metrics_str = """
|
52 |
+
0: Precision=0.950051944721634, Recall=0.9259259259259259, mAP50=0.9755763198757764, mAP50-95=0.8761168602246491
|
53 |
+
1: Precision=0.913220142622241, Recall=0.7941176470588235, mAP50=0.8960616051262742, mAP50-95=0.7549103010429146
|
54 |
+
2: Precision=0.7372984951890349, Recall=0.7895319766491371, mAP50=0.8814292455141511, mAP50-95=0.8206840991617665
|
55 |
+
3: Precision=0.4590719866278696, Recall=0.5, mAP50=0.461591956701709, mAP50-95=0.4211189219475949
|
56 |
+
4: Precision=0.6184005433721002, Recall=0.55, mAP50=0.606004146196315, mAP50-95=0.512222940400535
|
57 |
+
5: Precision=0.5713923109334266, Recall=0.5516453651312371, mAP50=0.6077089403423442, mAP50-95=0.5480459050646989
|
58 |
+
6: Precision=0.7171550800348669, Recall=0.8076923076923077, mAP50=0.8277810374576291, mAP50-95=0.716992210820697
|
59 |
+
7: Precision=0.9159120375114393, Recall=0.9318181818181818, mAP50=0.9646808976669168, mAP50-95=0.8816416588132834
|
60 |
+
8: Precision=0.9913887843872787, Recall=0.896551724137931, mAP50=0.9622860780984719, mAP50-95=0.87970008325344
|
61 |
+
9: Precision=0.7340852070508719, Recall=0.613871078813217, mAP50=0.7510088541708057, mAP50-95=0.6775157428360266
|
62 |
+
10: Precision=0.8420572532183483, Recall=0.9642857142857143, mAP50=0.9420676470588236, mAP50-95=0.8492293322429207
|
63 |
+
11: Precision=0.7099820948850775, Recall=0.8611111111111112, mAP50=0.8270923840557883, mAP50-95=0.7008903529428722
|
64 |
+
12: Precision=0.8634064755508549, Recall=0.7901915514513194, mAP50=0.9023652651696131, mAP50-95=0.8518173491764902
|
65 |
+
13: Precision=0.9299135123785923, Recall=0.8947368421052632, mAP50=0.9382840909090909, mAP50-95=0.8506474227923493
|
66 |
+
14: Precision=0.8306860735970896, Recall=0.7619047619047619, mAP50=0.8547228953537712, mAP50-95=0.7928691056143748
|
67 |
+
15: Precision=0.7551169289450425, Recall=0.6429092513076484, mAP50=0.7430199755151243, mAP50-95=0.6916089837167693
|
68 |
+
16: Precision=0.7799482742887337, Recall=0.886157931584948, mAP50=0.8752104461316781, mAP50-95=0.7687241130428973
|
69 |
+
17: Precision=0.8575207045294126, Recall=0.42857142857142855, mAP50=0.7140262820249389, mAP50-95=0.6183897172277056
|
70 |
+
18: Precision=0.8716010553696922, Recall=0.7037037037037037, mAP50=0.8307099280692011, mAP50-95=0.7576428475073667
|
71 |
+
19: Precision=0.7631703486659736, Recall=0.71875, mAP50=0.8517840363359761, mAP50-95=0.7270017216968
|
72 |
+
20: Precision=0.7006786499565775, Recall=0.5357142857142857, mAP50=0.681074868661097, mAP50-95=0.6043264313001361
|
73 |
+
21: Precision=0.879003331472376, Recall=0.7727272727272727, mAP50=0.8806168979931869, mAP50-95=0.7667080346058525
|
74 |
+
22: Precision=0.7399740934714494, Recall=0.9473684210526315, mAP50=0.8270595091183327, mAP50-95=0.7297418045330895
|
75 |
+
23: Precision=0.6797523465134718, Recall=0.6634822741917626, mAP50=0.7290151202431302, mAP50-95=0.6389816563450246
|
76 |
+
24: Precision=0.5106575767372992, Recall=0.2692307692307692, mAP50=0.4628142655915253, mAP50-95=0.4259814227175367
|
77 |
+
25: Precision=0.7178351457649109, Recall=0.6363877593290892, mAP50=0.7636380572293818, mAP50-95=0.703198583575968
|
78 |
+
26: Precision=0.7683054771818867, Recall=0.76, mAP50=0.8446857768667896, mAP50-95=0.785944137555996
|
79 |
+
27: Precision=0.9118273620472525, Recall=0.9411764705882353, mAP50=0.9854761904761906, mAP50-95=0.9027474156118146
|
80 |
+
28: Precision=0.9397295768801787, Recall=0.9, mAP50=0.9599586372531578, mAP50-95=0.8124781140856718
|
81 |
+
29: Precision=0.5533603918415103, Recall=0.4850790559103108, mAP50=0.6570443199470123, mAP50-95=0.5567443986552293
|
82 |
+
30: Precision=0.7277265819014959, Recall=0.6341463414634146, mAP50=0.7712519423559233, mAP50-95=0.6501650478097549
|
83 |
+
31: Precision=0.9026604718725301, Recall=0.6956186570121078, mAP50=0.8680566835689678, mAP50-95=0.6978489639647801
|
84 |
+
32: Precision=0.8135026607058359, Recall=0.7522680538999782, mAP50=0.8354574758576219, mAP50-95=0.7821063558458735
|
85 |
+
33: Precision=0.7790779039480513, Recall=0.9, mAP50=0.8962941688074686, mAP50-95=0.804624933068968
|
86 |
+
34: Precision=0.6679276293654098, Recall=0.8, mAP50=0.7718791094285562, mAP50-95=0.6901626796134892
|
87 |
+
35: Precision=0.7498106300805424, Recall=1.0, mAP50=0.9288888888888888, mAP50-95=0.8281384745931912
|
88 |
+
36: Precision=0.669169980455674, Recall=0.6363636363636364, mAP50=0.7484207820518326, mAP50-95=0.6197496206486401
|
89 |
+
37: Precision=0.6608559782633446, Recall=0.47073650675174755, mAP50=0.7066760114303333, mAP50-95=0.5642940639926054
|
90 |
+
38: Precision=0.8076999229108593, Recall=0.891152802239241, mAP50=0.8391059986380347, mAP50-95=0.7108548810513233
|
91 |
+
39: Precision=0.7968481463986551, Recall=0.85, mAP50=0.9042326007326007, mAP50-95=0.8318236263736264
|
92 |
+
40: Precision=0.8023103515088807, Recall=0.8776654610627173, mAP50=0.896700952322643, mAP50-95=0.8317242069728058
|
93 |
+
41: Precision=0.5921871873135267, Recall=0.6129032258064516, mAP50=0.6671298280474146, mAP50-95=0.6157299090903454
|
94 |
+
42: Precision=0.9252749675177708, Recall=1.0, mAP50=0.995, mAP50-95=0.8966156368778817
|
95 |
+
43: Precision=0.6805277669157428, Recall=0.5992657872763302, mAP50=0.6030014064050425, mAP50-95=0.5489571828955201
|
96 |
+
44: Precision=0.8494201308178745, Recall=0.8585289528827474, mAP50=0.9241694421237407, mAP50-95=0.8100875509127746
|
97 |
+
45: Precision=0.7024809793928225, Recall=0.7874260309720877, mAP50=0.8845747233909929, mAP50-95=0.7949268449653824
|
98 |
+
46: Precision=0.7025574866255323, Recall=0.76, mAP50=0.8325492141035347, mAP50-95=0.666734865195336
|
99 |
+
47: Precision=0.7591941149453945, Recall=0.5912316092043576, mAP50=0.7512858105633272, mAP50-95=0.6764176572398436
|
100 |
+
48: Precision=0.8456657996345192, Recall=0.8430628848647751, mAP50=0.9399850452197447, mAP50-95=0.8786812002629617
|
101 |
+
49: Precision=0.7204710725917737, Recall=0.7352941176470589, mAP50=0.741237399809586, mAP50-95=0.6761715420054211
|
102 |
+
50: Precision=0.8253276396888147, Recall=0.8928571428571429, mAP50=0.906570616883117, mAP50-95=0.8174792122718552
|
103 |
+
51: Precision=0.8960256069175631, Recall=0.7368421052631579, mAP50=0.8653566969859104, mAP50-95=0.7222711865850817
|
104 |
+
52: Precision=0.8965837951145418, Recall=0.9642857142857143, mAP50=0.967472340425532, mAP50-95=0.8589636557920141
|
105 |
+
53: Precision=0.9545083115556321, Recall=0.8571428571428571, mAP50=0.9135674652406416, mAP50-95=0.8215518853555006
|
106 |
+
54: Precision=0.5646648682359179, Recall=0.44, mAP50=0.5619231870105881, mAP50-95=0.4908901394556514
|
107 |
+
55: Precision=0.7872131727479629, Recall=0.9254203918719266, mAP50=0.8099451754385967, mAP50-95=0.7379299742891713
|
108 |
+
56: Precision=0.9144822017339415, Recall=0.9583333333333334, mAP50=0.9758695652173913, mAP50-95=0.9004608041843742
|
109 |
+
57: Precision=0.7574007279689324, Recall=0.8147857737779668, mAP50=0.874966859820315, mAP50-95=0.8177803359690431
|
110 |
+
58: Precision=0.7840435303646889, Recall=0.9310344827586207, mAP50=0.9344552352166162, mAP50-95=0.8622790610302784
|
111 |
+
59: Precision=0.7905591604614023, Recall=0.9090909090909091, mAP50=0.9071769202766654, mAP50-95=0.8498133648608812
|
112 |
+
60: Precision=0.6393577679658906, Recall=0.71875, mAP50=0.7464381385789797, mAP50-95=0.7028502401944823
|
113 |
+
61: Precision=0.9636942143168822, Recall=0.926829268292683, mAP50=0.9690184704275709, mAP50-95=0.8587403761587502
|
114 |
+
62: Precision=0.7106422187027044, Recall=0.7372477654594655, mAP50=0.811168030248403, mAP50-95=0.6946423381867156
|
115 |
+
63: Precision=0.6240267051567073, Recall=0.7419354838709677, mAP50=0.6856916079641516, mAP50-95=0.5598098005606787
|
116 |
+
64: Precision=0.5708113423650005, Recall=0.4, mAP50=0.5670697751464068, mAP50-95=0.4623254566524631
|
117 |
+
65: Precision=0.712308984376764, Recall=0.6818181818181818, mAP50=0.6822830260727701, mAP50-95=0.6207656181810598
|
118 |
+
66: Precision=0.9281391491434923, Recall=0.9259259259259259, mAP50=0.9771428571428571, mAP50-95=0.9193733014191849
|
119 |
+
67: Precision=0.7822224074931787, Recall=0.8164048926504403, mAP50=0.9250230341178616, mAP50-95=0.8312403244806166
|
120 |
+
68: Precision=0.7407527943592982, Recall=0.5681818181818182, mAP50=0.7576132015540581, mAP50-95=0.6539397100680419
|
121 |
+
69: Precision=0.658344258202623, Recall=0.5238095238095238, mAP50=0.6335207628321592, mAP50-95=0.5049619631877108
|
122 |
+
70: Precision=0.8231282250313716, Recall=0.96, mAP50=0.9436381749870592, mAP50-95=0.8243550313423704
|
123 |
+
71: Precision=0.7804906787812523, Recall=0.7359250181530276, mAP50=0.8436523291064535, mAP50-95=0.7293180250825338
|
124 |
+
72: Precision=0.7636938036158667, Recall=0.8571428571428571, mAP50=0.9038575262456839, mAP50-95=0.8255486611843585
|
125 |
+
73: Precision=0.7210597817728865, Recall=0.7, mAP50=0.747461695975865, mAP50-95=0.6554385227231857
|
126 |
+
74: Precision=0.8373838694891609, Recall=0.7925992470528516, mAP50=0.8964220894115631, mAP50-95=0.7998322000142604
|
127 |
+
75: Precision=0.6948102089833058, Recall=0.6282619254581066, mAP50=0.7272340541915377, mAP50-95=0.6055805877651762
|
128 |
+
76: Precision=0.8140855787046279, Recall=0.8, mAP50=0.8444618372423327, mAP50-95=0.6635431207567797
|
129 |
+
77: Precision=0.7694040466984147, Recall=0.6451612903225806, mAP50=0.8016044789081129, mAP50-95=0.7220811021287906
|
130 |
+
78: Precision=0.822004684194274, Recall=0.8553170634500037, mAP50=0.9001247244440818, mAP50-95=0.8446800734714162
|
131 |
+
79: Precision=0.8756831442439423, Recall=0.7288492706478783, mAP50=0.8527018889105804, mAP50-95=0.7948548317962955
|
132 |
+
80: Precision=0.9559447197223753, Recall=0.7236009393173949, mAP50=0.885492314226582, mAP50-95=0.8071829181758705
|
133 |
+
81: Precision=0.8578978417079882, Recall=0.8695652173913043, mAP50=0.9292433783108446, mAP50-95=0.869065290805738
|
134 |
+
82: Precision=0.940395346893057, Recall=0.5262511451637173, mAP50=0.8308674837523942, mAP50-95=0.713777575976463
|
135 |
+
83: Precision=0.5062456909760218, Recall=0.42857142857142855, mAP50=0.5831563152337651, mAP50-95=0.5284580407093069
|
136 |
+
84: Precision=0.7821500223465658, Recall=0.8461538461538461, mAP50=0.8896114018712242, mAP50-95=0.7632809864880561
|
137 |
+
85: Precision=0.8570093036531184, Recall=0.768415750498518, mAP50=0.8641878940891257, mAP50-95=0.7345890173170971
|
138 |
+
86: Precision=0.9336806482609095, Recall=0.8533788315552395, mAP50=0.9293629662486024, mAP50-95=0.8249410235935531
|
139 |
+
87: Precision=0.9345734419563879, Recall=0.84, mAP50=0.8993961136902314, mAP50-95=0.751260995580089
|
140 |
+
88: Precision=0.8253700344920221, Recall=0.6785714285714286, mAP50=0.7737868128717942, mAP50-95=0.6945037476840215
|
141 |
+
89: Precision=0.5591822015168044, Recall=0.40816081205181687, mAP50=0.5186574574038987, mAP50-95=0.3913971952114973
|
142 |
+
90: Precision=0.8162174621443528, Recall=0.8078689489851244, mAP50=0.9182480184871491, mAP50-95=0.8416554549009767
|
143 |
+
91: Precision=0.8074441943237106, Recall=0.7857142857142857, mAP50=0.883115072856214, mAP50-95=0.7708640311640476
|
144 |
+
92: Precision=0.8762454169520998, Recall=0.8125, mAP50=0.8436440648483553, mAP50-95=0.8085127428001734
|
145 |
+
93: Precision=0.7744758889653982, Recall=0.68, mAP50=0.8269884444312363, mAP50-95=0.6915551946760756
|
146 |
+
94: Precision=0.711088127413241, Recall=0.6857142857142857, mAP50=0.7831013411889166, mAP50-95=0.7180543483756786
|
147 |
+
95: Precision=0.7906170853084622, Recall=0.8262159362325655, mAP50=0.8480347086698847, mAP50-95=0.7374124386653089
|
148 |
+
96: Precision=0.831835967000895, Recall=0.9333333333333333, mAP50=0.9323333333333333, mAP50-95=0.9043257561980965
|
149 |
+
97: Precision=0.9837569186329179, Recall=0.9642857142857143, mAP50=0.9768309859154928, mAP50-95=0.8283180424900264
|
150 |
+
98: Precision=0.7417411361822507, Recall=0.6391371206075025, mAP50=0.7498195995357477, mAP50-95=0.70808938406264
|
151 |
+
99: Precision=0.9904679353245135, Recall=0.8846153846153846, mAP50=0.9028627166719194, mAP50-95=0.752072056680778
|
152 |
+
100: Precision=0.8317414830228937, Recall=0.75, mAP50=0.7459513869872813, mAP50-95=0.6926176615354661
|
153 |
+
101: Precision=0.41978680894089854, Recall=0.4782608695652174, mAP50=0.48141022360551583, mAP50-95=0.4144050706681329
|
154 |
+
102: Precision=0.6446827675977833, Recall=0.7619047619047619, mAP50=0.8253548103548103, mAP50-95=0.7289570241595414
|
155 |
+
103: Precision=0.771803414775816, Recall=0.7958540537409124, mAP50=0.8893964079800443, mAP50-95=0.8319058711090973
|
156 |
+
104: Precision=0.46852444226198303, Recall=0.44097931046456407, mAP50=0.39952897726462094, mAP50-95=0.3147688996209689
|
157 |
+
105: Precision=0.6631411027359093, Recall=0.5106839320057245, mAP50=0.6733223280489881, mAP50-95=0.5746738298302899
|
158 |
+
106: Precision=1.0, Recall=0.6651217326058613, mAP50=0.7984452522197043, mAP50-95=0.6863382402967833
|
159 |
+
107: Precision=0.8327070961152427, Recall=0.96, mAP50=0.9694927536231884, mAP50-95=0.8618759209987303
|
160 |
+
108: Precision=0.8126512912365189, Recall=0.7992019378892692, mAP50=0.8333851819016381, mAP50-95=0.7120968967901217
|
161 |
+
109: Precision=0.5905790605724864, Recall=0.5501193036758621, mAP50=0.6811595925297115, mAP50-95=0.5671807467011729
|
162 |
+
110: Precision=0.8607857169580835, Recall=0.8421052631578947, mAP50=0.8541075996374958, mAP50-95=0.7472136130583998
|
163 |
+
111: Precision=0.7602089400199521, Recall=0.5769230769230769, mAP50=0.7627324274723889, mAP50-95=0.6905122694487801
|
164 |
+
112: Precision=0.7889751824977789, Recall=0.7692307692307693, mAP50=0.7564113973353781, mAP50-95=0.6488640540762379
|
165 |
+
113: Precision=0.6494792910272318, Recall=0.43239109804927656, mAP50=0.6031385443937921, mAP50-95=0.5494966164345454
|
166 |
+
114: Precision=0.5877517671416174, Recall=0.5, mAP50=0.5915767929438827, mAP50-95=0.498830414109515
|
167 |
+
115: Precision=0.6011481453277376, Recall=0.7894736842105263, mAP50=0.7358054903166529, mAP50-95=0.6513141815274721
|
168 |
+
116: Precision=0.8737558428352519, Recall=0.64, mAP50=0.7586255320667661, mAP50-95=0.7208942608628005
|
169 |
+
117: Precision=0.6146246520159415, Recall=0.6818181818181818, mAP50=0.7404198709608547, mAP50-95=0.6515161494565639
|
170 |
+
118: Precision=0.6601156119013557, Recall=0.6475174296603731, mAP50=0.6695776738813121, mAP50-95=0.5734412428124116
|
171 |
+
119: Precision=0.8467176165515974, Recall=0.8076923076923077, mAP50=0.90133166969147, mAP50-95=0.8275215828900926
|
172 |
+
"""
|
173 |
+
|
174 |
+
# Function to parse per-class metrics from the multi-line string
|
175 |
+
def parse_per_class_metrics(metrics_str):
|
176 |
+
per_class_metrics = []
|
177 |
+
lines = metrics_str.strip().split('\n')
|
178 |
+
for line in lines:
|
179 |
+
if not line.strip():
|
180 |
+
continue # Skip empty lines
|
181 |
+
# Split by colon to separate class index and metrics
|
182 |
+
try:
|
183 |
+
class_idx_part, metrics_part = line.split(':', 1)
|
184 |
+
class_idx = int(class_idx_part.strip())
|
185 |
+
# Extract metrics using split and strip
|
186 |
+
metrics = {}
|
187 |
+
metrics["Class Index"] = class_idx
|
188 |
+
metrics_list = metrics_part.strip().split(', ')
|
189 |
+
for metric in metrics_list:
|
190 |
+
key, value = metric.split('=')
|
191 |
+
key = key.strip()
|
192 |
+
value = float(value.strip())
|
193 |
+
metrics[key] = value
|
194 |
+
per_class_metrics.append(metrics)
|
195 |
+
except Exception as e:
|
196 |
+
print(f"Error parsing line: {line}")
|
197 |
+
print(e)
|
198 |
+
return per_class_metrics
|
199 |
+
|
200 |
+
# Parse the per-class metrics
|
201 |
+
parsed_per_class_metrics = parse_per_class_metrics(per_class_metrics_str)
|
202 |
+
|
203 |
+
# Map class indices to class names
|
204 |
+
per_class_metrics_data = []
|
205 |
+
for metric in parsed_per_class_metrics:
|
206 |
+
class_idx = metric.pop("Class Index")
|
207 |
+
class_name = class_names[class_idx] if class_idx < len(class_names) else f"Class{class_idx}"
|
208 |
+
metric["Class"] = class_name
|
209 |
+
per_class_metrics_data.append(metric)
|
210 |
+
|
211 |
+
# Combine Overall Metrics and Per-Class Metrics
|
212 |
+
metrics_data = [overall_metrics] + per_class_metrics_data
|
213 |
+
|
214 |
+
# Create Metrics DataFrame
|
215 |
+
metrics_df = pd.DataFrame(metrics_data, columns=["Class", "Precision", "Recall", "mAP50", "mAP50-95"])
|
216 |
+
|
217 |
+
# ---------------------
|
218 |
+
# Inference Functions
|
219 |
+
# ---------------------
|
220 |
+
|
221 |
+
def run_inference(img: np.ndarray, model):
|
222 |
+
"""
|
223 |
+
Runs inference on the input image using the YOLO model.
|
224 |
+
Returns the detection results and the annotated image.
|
225 |
+
"""
|
226 |
+
# Convert from BGR to RGB
|
227 |
+
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
228 |
+
|
229 |
+
# Run prediction with specified confidence and IoU thresholds
|
230 |
+
results = model.predict(img_rgb, conf=0.25, iou=0.6)
|
231 |
+
|
232 |
+
detections = []
|
233 |
+
res = results[0]
|
234 |
+
boxes = res.boxes
|
235 |
+
if boxes is not None and len(boxes) > 0:
|
236 |
+
for i in range(len(boxes)):
|
237 |
+
xyxy = boxes.xyxy[i].tolist() # Bounding box coordinates
|
238 |
+
conf = float(boxes.conf[i]) # Confidence score
|
239 |
+
cls_idx = int(boxes.cls[i]) # Class index
|
240 |
+
class_name = class_names[cls_idx] # Class name
|
241 |
+
detections.append([class_name, conf, *xyxy])
|
242 |
+
return detections, results
|
243 |
+
|
244 |
+
def draw_boxes(image: np.ndarray, detections):
|
245 |
+
"""
|
246 |
+
Draws bounding boxes and labels on the image.
|
247 |
+
"""
|
248 |
+
# Define a color palette for classes (BGR)
|
249 |
+
palette = [
|
250 |
+
(0, 255, 0), # Green
|
251 |
+
(255, 0, 0), # Blue
|
252 |
+
(0, 0, 255), # Red
|
253 |
+
(255, 255, 0), # Cyan
|
254 |
+
(255, 0, 255), # Magenta
|
255 |
+
(0, 255, 255), # Yellow
|
256 |
+
(128, 0, 128), # Purple
|
257 |
+
(128, 128, 0), # Olive
|
258 |
+
(0, 128, 128), # Teal
|
259 |
+
# Add more colors as needed
|
260 |
+
]
|
261 |
+
num_colors = len(palette)
|
262 |
+
|
263 |
+
for det in detections:
|
264 |
+
class_name, conf, x1, y1, x2, y2 = det
|
265 |
+
# Find class index
|
266 |
+
try:
|
267 |
+
cls_idx = class_names.index(class_name)
|
268 |
+
except ValueError:
|
269 |
+
cls_idx = 0 # Default to first color if class not found
|
270 |
+
color = palette[cls_idx % num_colors]
|
271 |
+
|
272 |
+
# Draw bounding box
|
273 |
+
cv2.rectangle(image, (int(x1), int(y1)), (int(x2), int(y2)), color, 2)
|
274 |
+
|
275 |
+
# Prepare label
|
276 |
+
label = f"{class_name} {conf:.2f}"
|
277 |
+
font = cv2.FONT_HERSHEY_SIMPLEX
|
278 |
+
font_scale = 0.6
|
279 |
+
thickness = 2
|
280 |
+
|
281 |
+
# Get text size
|
282 |
+
(tw, th), _ = cv2.getTextSize(label, font, font_scale, thickness)
|
283 |
+
|
284 |
+
# Draw filled rectangle behind text
|
285 |
+
cv2.rectangle(image, (int(x1), int(y1)-th-10), (int(x1)+tw, int(y1)), color, -1)
|
286 |
+
|
287 |
+
# Put text above the bounding box
|
288 |
+
cv2.putText(image, label, (int(x1), int(y1)-5), font, font_scale, (255, 255, 255), thickness, cv2.LINE_AA)
|
289 |
+
|
290 |
+
return image
|
291 |
+
|
292 |
+
def process_image(image):
|
293 |
+
"""
|
294 |
+
Processes the input image, runs inference, and prepares the outputs.
|
295 |
+
"""
|
296 |
+
# Convert PIL Image to NumPy array
|
297 |
+
img = np.array(image)
|
298 |
+
|
299 |
+
# Convert from RGB to BGR for OpenCV
|
300 |
+
img_bgr = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
301 |
+
|
302 |
+
# Run classification inference
|
303 |
+
detections, results = run_inference(img_bgr, model)
|
304 |
+
|
305 |
+
# Draw bounding boxes on the image
|
306 |
+
annotated_img = draw_boxes(img_bgr.copy(), detections)
|
307 |
+
|
308 |
+
# Convert annotated image back to RGB
|
309 |
+
annotated_img_rgb = cv2.cvtColor(annotated_img, cv2.COLOR_BGR2RGB)
|
310 |
+
|
311 |
+
# Convert to PIL Image
|
312 |
+
annotated_img_pil = Image.fromarray(annotated_img_rgb)
|
313 |
+
|
314 |
+
# Create Detection Results DataFrame
|
315 |
+
det_df = pd.DataFrame(detections, columns=["Class", "Confidence", "x1", "y1", "x2", "y2"])
|
316 |
+
|
317 |
+
# Return annotated image, detection results, and metrics table
|
318 |
+
return annotated_img_pil, det_df, metrics_df
|
319 |
+
|
320 |
+
# ---------------------
|
321 |
+
# Gradio Interface
|
322 |
+
# ---------------------
|
323 |
+
|
324 |
+
with gr.Blocks() as demo:
|
325 |
+
gr.Markdown("# YOLO Dog Breed Detection Web App")
|
326 |
+
gr.Markdown("Upload an image of a dog, and the model will detect and classify the breed, displaying bounding boxes, confidence scores, and precomputed validation metrics.")
|
327 |
+
|
328 |
+
with gr.Row():
|
329 |
+
with gr.Column():
|
330 |
+
input_image = gr.Image(type="pil", label="Upload Image")
|
331 |
+
submit_btn = gr.Button("Run Inference")
|
332 |
+
with gr.Column():
|
333 |
+
annotated_image = gr.Image(type="pil", label="Annotated Image")
|
334 |
+
det_results = gr.DataFrame(label="Detection Results")
|
335 |
+
metrics_table = gr.DataFrame(value=metrics_df, label="Validation Metrics")
|
336 |
+
|
337 |
+
submit_btn.click(fn=process_image, inputs=input_image, outputs=[annotated_image, det_results, metrics_table])
|
338 |
+
|
339 |
+
demo.launch()
|
340 |
+
|
best.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a14f7536c39d72689a8473171ed4cca4eb48258319e15017c7f74458094f5718
|
3 |
+
size 5626963
|
data.yaml
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
train: /content/Stanford-Dogs-Dataset-dog-breed-1/train/images
|
2 |
+
val: /content/Stanford-Dogs-Dataset-dog-breed-1/valid/images
|
3 |
+
test: /content/Stanford-Dogs-Dataset-dog-breed-1/test/images
|
4 |
+
|
5 |
+
nc: 120
|
6 |
+
names: ['Afghan_hound', 'African_hunting_dog', 'Airedale', 'American_Staffordshire_terrier', 'Appenzeller', 'Australian_terrier', 'Bedlington_terrier', 'Bernese_mountain_dog', 'Blenheim_spaniel', 'Border_collie', 'Border_terrier', 'Boston_bull', 'Bouvier_des_Flandres', 'Brabancon_griffon', 'Brittany_spaniel', 'Cardigan', 'Chesapeake_Bay_retriever', 'Chihuahua', 'Dandie_Dinmont', 'Doberman', 'English_foxhound', 'English_setter', 'English_springer', 'EntleBucher', 'Eskimo_dog', 'French_bulldog', 'German_shepherd', 'German_short-haired_pointer', 'Gordon_setter', 'Great_Dane', 'Great_Pyrenees', 'Greater_Swiss_Mountain_dog', 'Ibizan_hound', 'Irish_setter', 'Irish_terrier', 'Irish_water_spaniel', 'Irish_wolfhound', 'Italian_greyhound', 'Japanese_spaniel', 'Kerry_blue_terrier', 'Labrador_retriever', 'Lakeland_terrier', 'Leonberg', 'Lhasa', 'Maltese_dog', 'Mexican_hairless', 'Newfoundland', 'Norfolk_terrier', 'Norwegian_elkhound', 'Norwich_terrier', 'Old_English_sheepdog', 'Pekinese', 'Pembroke', 'Pomeranian', 'Rhodesian_ridgeback', 'Rottweiler', 'Saint_Bernard', 'Saluki', 'Samoyed', 'Scotch_terrier', 'Scottish_deerhound', 'Sealyham_terrier', 'Shetland_sheepdog', 'Shih-Tzu', 'Siberian_husky', 'Staffordshire_bullterrier', 'Sussex_spaniel', 'Tibetan_mastiff', 'Tibetan_terrier', 'Walker_hound', 'Weimaraner', 'Welsh_springer_spaniel', 'West_Highland_white_terrier', 'Yorkshire_terrier', 'affenpinscher', 'basenji', 'basset', 'beagle', 'black-and-tan_coonhound', 'bloodhound', 'bluetick', 'borzoi', 'boxer', 'briard', 'bull_mastiff', 'cairn', 'chow', 'clumber', 'cocker_spaniel', 'collie', 'curly-coated_retriever', 'dhole', 'dingo', 'flat-coated_retriever', 'giant_schnauzer', 'golden_retriever', 'groenendael', 'keeshond', 'kelpie', 'komondor', 'kuvasz', 'malamute', 'malinois', 'miniature_pinscher', 'miniature_poodle', 'miniature_schnauzer', 'otterhound', 'papillon', 'pug', 'redbone', 'schipperke', 'silky_terrier', 'soft-coated_wheaten_terrier', 'standard_poodle', 'standard_schnauzer', 'toy_poodle', 'toy_terrier', 'vizsla', 'whippet', 'wire-haired_fox_terrier']
|
7 |
+
|
8 |
+
roboflow:
|
9 |
+
workspace: iliescu-mihail-doirn
|
10 |
+
project: stanford-dogs-dataset-dog-breed
|
11 |
+
version: 1
|
12 |
+
license: Public Domain
|
13 |
+
url: https://universe.roboflow.com/iliescu-mihail-doirn/stanford-dogs-dataset-dog-breed/dataset/1
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy
|
2 |
+
opencv-python
|
3 |
+
Pillow
|
4 |
+
gradio
|
5 |
+
pandas
|
6 |
+
ultralytics
|
7 |
+
PyYAML
|
8 |
+
torch
|
9 |
+
|