Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
import torchvision.transforms as transforms | |
from PIL import Image | |
import os | |
from pathlib import Path | |
from gradio.flagging import SimpleCSVLogger | |
from utils import GradioConfig | |
class Resnet50Imagenet1kGradioApp: | |
def __init__(self,cfg: GradioConfig): | |
self.device = cfg.device # Change this to 'cuda' if you have a GPU available | |
# Validate model path parameters | |
# Convert to strings if needed and create path | |
model_dir = str(cfg.model_dir) | |
model_file = str(cfg.model_file_name) | |
model_full_path = Path(model_dir) / model_file | |
# Verify the file exists | |
if not model_full_path.exists(): | |
raise FileNotFoundError(f"Model file not found at: {model_full_path}") | |
# load traced model | |
self.model = torch.jit.load(model_full_path) | |
self.model = self.model.to(self.device) | |
self.model.eval() | |
# Define the same transforms used during training/testing | |
self.transforms = transforms.Compose([ | |
transforms.Resize(256), | |
transforms.CenterCrop(224), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) | |
]) | |
self.labels = cfg.labels | |
def predict(self, image): | |
if image is None: | |
return None | |
# Convert to PIL Image if needed | |
if not isinstance(image, Image.Image): | |
image = Image.fromarray(image).convert('RGB') | |
# Preprocess image | |
img_tensor = self.transforms(image).unsqueeze(0).to(self.device) | |
# Get prediction | |
output = self.model(img_tensor) | |
probabilities = torch.nn.functional.softmax(output[0], dim=0) | |
probs, indices = torch.topk(probabilities, k=5) | |
print(f"Top 5 predictions:") | |
for idx, prob in zip(indices, probs): | |
print(f"idx: {idx}, label : {self.labels[idx]} , prob: {prob.item() * 100:.2f}%") # Format probability to 2 decimal places) | |
return { | |
self.labels[idx]: float(prob) | |
for idx, prob in zip(indices, probs) | |
} | |
# Create classifier instance | |
cfg = GradioConfig() | |
classifier = Resnet50Imagenet1kGradioApp(cfg) | |
# Create Gradio interface | |
demo = gr.Interface( | |
fn=classifier.predict, | |
inputs=gr.Image(), | |
outputs=gr.Label(num_top_classes=5), | |
title="Resnet50 Imagenet 1k classifier", | |
description="Upload an image to classify Images", | |
flagging_mode="never", | |
flagging_callback=SimpleCSVLogger() | |
) | |
if __name__ == "__main__": | |
demo.launch() |