Spaces:
Sleeping
Sleeping
File size: 11,244 Bytes
af91c4e 46ec2e5 af91c4e 46ec2e5 af91c4e 46ec2e5 af91c4e 46ec2e5 af91c4e 46ec2e5 af91c4e 46ec2e5 af91c4e 46ec2e5 af91c4e 46ec2e5 af91c4e 46ec2e5 af91c4e 46ec2e5 af91c4e 46ec2e5 af91c4e 46ec2e5 af91c4e 46ec2e5 af91c4e 46ec2e5 af91c4e 46ec2e5 af91c4e 46ec2e5 af91c4e 46ec2e5 af91c4e 46ec2e5 af91c4e 46ec2e5 af91c4e 46ec2e5 af91c4e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"\n",
"def read_corpus(corpus_path:str):\n",
" with open(corpus_path, 'r', encoding='utf-8') as f:\n",
" text = f.read()\n",
" return text\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"\n",
"\n",
"class BPEGujaratiTokenizer:\n",
" def __init__(self, corpus_path:str, max_vocab_size:int=5001, sample_size:int=50000):\n",
" self.corpus = read_corpus(corpus_path)\n",
" self.max_vocab_size = max_vocab_size\n",
" self.corpus_vocab = sorted(list(set(self.corpus)))\n",
" self.corpus_vocab_size = len(self.corpus_vocab)\n",
" self.stoi = { ch:i for i,ch in enumerate(self.corpus_vocab) }\n",
" self.itos = { i:ch for i,ch in enumerate(self.corpus_vocab) }\n",
" self.sample_size = sample_size\n",
"\n",
" self.vocab, self.merges = self.train_bpe(self.corpus, self.max_vocab_size, self.sample_size)\n",
"\n",
"\n",
" def get_stats(self, ids):\n",
" counts = {}\n",
" for pair in zip(ids, ids[1:]):\n",
" counts[pair] = counts.get(pair, 0) + 1\n",
" return counts\n",
"\n",
"\n",
" def merge(self,ids, pair, idx):\n",
" newids = []\n",
" i = 0\n",
" while i < len(ids):\n",
" if i < len(ids) - 1 and ids[i] == pair[0] and ids[i+1] == pair[1]:\n",
" newids.append(idx)\n",
" i += 2\n",
" else:\n",
" newids.append(ids[i])\n",
" i += 1\n",
" return newids\n",
"\n",
"\n",
"\n",
" def train_bpe(self, corpus, max_vocab_size, sample_size=None):\n",
" self.vocab = {idx: bytes([idx]) for idx in range(256)}\n",
" print(f\"Before Training Vocab length {len(self.vocab)}\")\n",
" if sample_size :\n",
" corpus = corpus[:sample_size]\n",
" num_merges = max_vocab_size - len(self.vocab)\n",
" print(f\"num_merges required {num_merges}\")\n",
" tokens = corpus.encode('utf-8')\n",
" tokens= list(map(int, tokens))\n",
" ids = list(tokens)\n",
" self.merges = {} # (int, int) -> int\n",
" print(f\"Before training: ids length: {len(ids)}\")\n",
" print(f\"Before training: tokens length: {len(tokens)}\")\n",
" print(\"Before training: merges length: \", len(self.merges))\n",
"\n",
" for i in range(num_merges):\n",
" stats = self.get_stats(ids)\n",
" pair = max(stats, key=stats.get)\n",
" idx = len(self.vocab)+i\n",
" ids = self.merge(ids, pair, idx)\n",
" self.merges[pair] = idx\n",
" # merge the vocab\n",
" \n",
" for (p0, p1), idx in self.merges.items():\n",
" self.vocab[idx] = self.vocab[p0] + self.vocab[p1]\n",
" print(f\"After training: ids length: {len(ids)}\")\n",
" print(f\"After training: tokens length: {len(tokens)}\")\n",
" print(\"After training: merges length: \", len(self.merges))\n",
" print(f\"After Training Vocab length {len(self.vocab)}\")\n",
" print(f\"compression ratio: {len(tokens) / len(ids):.2f}X\")\n",
" return self.vocab, self.merges\n",
"\n",
" def encode(self, text):\n",
" tokens = list(text.encode(\"utf-8\"))\n",
" while len(tokens) >= 2:\n",
" stats = self.get_stats(tokens)\n",
" pair = min(stats, key=lambda p: self.merges.get(p, float(\"inf\")))\n",
" if pair not in self.merges:\n",
" break # nothing else can be merged\n",
" idx = self.merges[pair]\n",
" tokens = self.merge(tokens, pair, idx)\n",
" return tokens\n",
"\n",
" \n",
" def decode(self, tokens):\n",
" tokens = b\"\".join(self.vocab[idx] for idx in tokens)\n",
" text = tokens.decode(\"utf-8\", errors=\"replace\")\n",
" return text\n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Before Training Vocab length 256\n",
"num_merges required 4744\n",
"Before training: ids length: 755940\n",
"Before training: tokens length: 755940\n",
"Before training: merges length: 0\n",
"After training: ids length: 76306\n",
"After training: tokens length: 755940\n",
"After training: merges length: 4744\n",
"After Training Vocab length 5000\n",
"compression ratio: 9.91X\n",
"Time taken to train: 199.02717900276184 seconds\n",
"--------------------------------\n"
]
}
],
"source": [
"import time\n",
"\n",
"start_time = time.time()\n",
"tokenizer = BPEGujaratiTokenizer(corpus_path=\"gu_corpus.txt\", max_vocab_size=5000, sample_size=300000)\n",
"end_time = time.time()\n",
"print(f\"Time taken to train: {end_time - start_time} seconds\")\n",
"print(\"--------------------------------\")\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[294, 307, 164, 292, 431, 325, 317, 3229, 444]\n",
"Time taken to encode: 0.0007619857788085938 seconds\n",
"--------------------------------\n",
"હું તને પ્રેમ કરું છું\n",
"Time taken to decode: 0.0004019737243652344 seconds\n",
"--------------------------------\n",
"original: હું આજે ખૂબ ખુશ છું.\n",
"encoded: [294, 307, 1414, 853, 928, 1793, 482, 444, 46]\n",
"decoded: હું આજે ખૂબ ખુશ છું.\n",
"True\n",
"original: તું શું કરે છે? \n",
"encoded: [3519, 182, 307, 391, 4339, 63, 32]\n",
"decoded: તું શું કરે છે? \n",
"True\n",
"original: મને ચા પીવી છે. \n",
"encoded: [274, 292, 154, 758, 519, 269, 296, 46, 32]\n",
"decoded: મને ચા પીવી છે. \n",
"True\n",
"original: એ બધું સરસ છે. \n",
"encoded: [512, 4222, 3997, 2296, 3648, 46, 32]\n",
"decoded: એ બધું સરસ છે. \n",
"True\n",
"original: આ પુસ્તક ખૂબ રસપ્રદ છે. \n",
"encoded: [256, 4844, 2469, 290, 3227, 311, 4738, 345, 3648, 46, 32]\n",
"decoded: આ પુસ્તક ખૂબ રસપ્રદ છે. \n",
"True\n",
"original: તારે ક્યારે આવવું છે? \n",
"encoded: [2460, 335, 484, 340, 793, 296, 63, 32]\n",
"decoded: તારે ક્યારે આવવું છે? \n",
"True\n",
"original: આ મારો મિત્ર છે. \n",
"encoded: [256, 134, 309, 763, 4071, 3648, 46, 32]\n",
"decoded: આ મારો મિત્ર છે. \n",
"True\n",
"original: હું શાકભાજી લઈ આવ્યો છું. \n",
"encoded: [294, 307, 182, 533, 455, 397, 666, 451, 655, 2301, 444, 46, 32]\n",
"decoded: હું શાકભાજી લઈ આવ્યો છું. \n",
"True\n",
"original: આકાશ માં વાદળ છે. \n",
"encoded: [256, 134, 290, 676, 1546, 181, 390, 343, 3648, 46, 32]\n",
"decoded: આકાશ માં વાદળ છે. \n",
"True\n",
"original: શાળા ક્યારે શરૂ થશે? \n",
"encoded: [332, 547, 581, 484, 3680, 165, 1168, 63, 32]\n",
"decoded: શાળા ક્યારે શરૂ થશે? \n",
"True\n",
"original: આ પુસ્તક ખૂબ રસપ્રદ છે.\n",
"encoded: [256, 4844, 2469, 290, 3227, 311, 4738, 345, 3648, 46]\n",
"decoded: આ પુસ્તક ખૂબ રસપ્રદ છે.\n",
"True\n",
"Time taken to decode: 0.009686946868896484 seconds\n",
"--------------------------------\n"
]
}
],
"source": [
"start_time = time.time()\n",
"print(tokenizer.encode(\"હું તને પ્રેમ કરું છું\"))\n",
"end_time = time.time()\n",
"print(f\"Time taken to encode: {end_time - start_time} seconds\")\n",
"print(\"--------------------------------\")\n",
"start_time = time.time()\n",
"print(tokenizer.decode(tokenizer.encode(\"હું તને પ્રેમ કરું છું\")))\n",
"end_time = time.time()\n",
"print(f\"Time taken to decode: {end_time - start_time} seconds\")\n",
"print(\"--------------------------------\")\n",
"start_time = time.time()\n",
"sentences = [\"હું આજે ખૂબ ખુશ છું.\",\"તું શું કરે છે? \",\"મને ચા પીવી છે. \",\"એ બધું સરસ છે. \",\"આ પુસ્તક ખૂબ રસપ્રદ છે. \",\"તારે ક્યારે આવવું છે? \",\"આ મારો મિત્ર છે. \",\"હું શાકભાજી લઈ આવ્યો છું. \",\"આકાશ માં વાદળ છે. \",\"શાળા ક્યારે શરૂ થશે? \",'આ પુસ્તક ખૂબ રસપ્રદ છે.']\n",
"for sentence in sentences:\n",
" print(\"original: \", sentence)\n",
" print(\"encoded: \", tokenizer.encode(sentence))\n",
" print(\"decoded: \", tokenizer.decode(tokenizer.encode(sentence)))\n",
" print(tokenizer.decode(tokenizer.encode(sentence)) == sentence)\n",
"end_time = time.time()\n",
"print(f\"Time taken to decode: {end_time - start_time} seconds\")\n",
"print(\"--------------------------------\") "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"colab": {
"provenance": []
},
"kaggle": {
"accelerator": "none",
"dataSources": [
{
"datasetId": 6426227,
"sourceId": 10374225,
"sourceType": "datasetVersion"
}
],
"dockerImageVersionId": 30822,
"isGpuEnabled": false,
"isInternetEnabled": true,
"language": "python",
"sourceType": "notebook"
},
"kernelspec": {
"display_name": "venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.6"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|