File size: 10,579 Bytes
6da882f
 
 
fa554ab
0e1b91c
6da882f
fa554ab
6da882f
 
 
 
 
 
 
 
 
 
 
fa554ab
 
6da882f
 
 
929a539
 
6da882f
 
 
 
 
 
09dd3c4
0e1b91c
929a539
6da882f
 
0e1b91c
 
929a539
0e1b91c
 
 
929a539
0e1b91c
929a539
 
 
6da882f
 
 
0e1b91c
6da882f
929a539
6da882f
 
 
 
929a539
6da882f
 
929a539
6da882f
 
 
 
 
 
 
 
 
 
 
929a539
6da882f
fa554ab
 
 
929a539
6da882f
929a539
0e1b91c
929a539
6da882f
0e1b91c
 
 
 
929a539
0e1b91c
 
929a539
0e1b91c
 
929a539
0e1b91c
 
929a539
0e1b91c
 
929a539
0e1b91c
 
 
 
929a539
0e1b91c
 
 
 
 
 
 
 
 
 
fa554ab
0e1b91c
 
6da882f
 
 
929a539
fa554ab
0e1b91c
 
fa554ab
929a539
fa554ab
0e1b91c
 
929a539
0e1b91c
 
 
 
 
fa554ab
 
 
 
929a539
6da882f
 
 
 
 
 
 
929a539
6da882f
 
929a539
6da882f
 
 
 
 
 
 
 
929a539
6da882f
 
 
 
 
 
 
929a539
6da882f
 
929a539
6da882f
 
 
 
 
 
 
 
 
 
 
 
929a539
6da882f
 
 
929a539
6da882f
 
929a539
6da882f
 
929a539
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f764e8a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import gradio as gr
import os
import json
from huggingface_hub import hf_hub_download, list_repo_files, upload_file, HfApi
from datasets import load_dataset, Dataset
import logging
import tempfile

# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# Cricket annotation categories
ANNOTATION_CATEGORIES = {
    "Bowler's Run Up": ["Fast", "Slow"],
    "Delivery Type": ["Yorker", "Bouncer", "Length Ball", "Slower ball", "Googly", "Arm Ball", "Other"],
    "Ball's trajectory": ["In Swing", "Out Swing", "Off spin", "Leg spin"],
    "Shot Played": ["Cover Drive", "Straight Drive", "On Drive", "Pull", "Square Cut", "Defensive Block"],
    "Outcome of the shot": ["Four (4)", "Six (6)", "Wicket", "Single (1)", "Double (2)", "Triple (3)", "Dot (0)"],
    "Shot direction": ["Long On", "Long Off", "Cover", "Point", "Midwicket", "Square Leg", "Third Man", "Fine Leg"],
    "Fielder's Action": ["Catch taken", "Catch dropped", "Misfield", "Run-out attempt", "Fielder fields"]
}

HF_REPO_ID = "srrthk/CricBench" 
HF_REPO_TYPE = "dataset"  

class VideoAnnotator:
    def __init__(self):
        self.video_files = []
        self.current_video_idx = 0
        self.annotations = {}
        self.hf_token = os.environ.get("HF_TOKEN")
        self.dataset = None
        
    def load_videos_from_hf(self):
        try:
            logger.info(f"Loading dataset from HuggingFace: {HF_REPO_ID}")
            self.dataset = load_dataset(HF_REPO_ID, token=self.hf_token)
            
            # Get the split (usually 'train')
            split = list(self.dataset.keys())[0]
            self.dataset_split = self.dataset[split]
            
            # Get all video files from the dataset
            self.video_files = [item['video'] if 'video' in item else item['path'] 
                               for item in self.dataset_split]
            
            logger.info(f"Found {len(self.video_files)} video files")
            return len(self.video_files) > 0
        except Exception as e:
            logger.error(f"Error accessing HuggingFace dataset: {e}")
            return False
    
    def get_current_video(self):
        if not self.video_files:
            logger.warning("No video files available")
            return None
        
        video_path = self.video_files[self.current_video_idx]
        logger.info(f"Loading video: {video_path}")
        
        try:
            local_path = hf_hub_download(
                repo_id=HF_REPO_ID,
                filename=video_path,
                repo_type=HF_REPO_TYPE
            )
            logger.info(f"Video downloaded to: {local_path}")
            return local_path
        except Exception as e:
            logger.error(f"Error downloading video: {e}")
            return None
    
    def save_annotation(self, annotations_dict):
        if not annotations_dict:
            logger.warning("No annotations to save")
            return "No annotations to save"
            
        video_name = os.path.basename(self.video_files[self.current_video_idx])
        
        logger.info(f"Saving annotations for {video_name}")
        
        try:
            # Update the dataset with the new annotations
            if self.dataset is not None:
                # Get the split name (e.g., 'train')
                split = list(self.dataset.keys())[0]
                
                # Create a copy of the dataset to modify
                updated_dataset = self.dataset[split].to_pandas()
                
                # Convert annotations to JSON string
                annotation_json = json.dumps(annotations_dict)
                
                # Update the annotations column for the current video
                updated_dataset.loc[self.current_video_idx, 'annotations'] = annotation_json
                
                # Convert back to Hugging Face dataset
                new_dataset = Dataset.from_pandas(updated_dataset)
                
                # Push updated dataset to Hugging Face Hub
                if self.hf_token:
                    logger.info(f"Uploading updated dataset to Hugging Face: {HF_REPO_ID}")
                    new_dataset.push_to_hub(
                        HF_REPO_ID, 
                        split=split,
                        token=self.hf_token
                    )
                    # Update our local copy
                    self.dataset[split] = new_dataset
                    return f"Annotations saved for {video_name} and uploaded to Hugging Face dataset"
                else:
                    logger.warning("HF_TOKEN not found. Dataset updated locally only.")
                    self.dataset[split] = new_dataset
                    return f"Annotations saved locally for {video_name} (no HF upload)"
            else:
                logger.error("Dataset not loaded, cannot save annotations")
                return "Error: Dataset not loaded"
        except Exception as e:
            logger.error(f"Error saving annotations: {e}")
            return f"Error saving: {str(e)}"
    
    def load_existing_annotation(self):
        """Try to load existing annotation for the current video from the dataset"""
        if not self.dataset or not self.video_files:
            return None
            
        try:
            # Get the split name (e.g., 'train')
            split = list(self.dataset.keys())[0]
            
            # Check if the current item has annotations
            if 'annotations' in self.dataset[split][self.current_video_idx]:
                annotation_str = self.dataset[split][self.current_video_idx]['annotations']
                if annotation_str:
                    return json.loads(annotation_str)
            return None
        except Exception as e:
            logger.error(f"Error loading existing annotation: {e}")
            return None
    
    def next_video(self, *current_annotations):
        # Save current annotations before moving to next video
        if self.video_files:
            annotations_dict = {}
            for i, category in enumerate(ANNOTATION_CATEGORIES.keys()):
                if current_annotations[i]:
                    annotations_dict[category] = current_annotations[i]
            
            if annotations_dict:
                self.save_annotation(annotations_dict)
        
        # Move to next video
        if self.current_video_idx < len(self.video_files) - 1:
            self.current_video_idx += 1
            logger.info(f"Moving to next video (index: {self.current_video_idx})")
            return self.get_current_video(), *[None] * len(ANNOTATION_CATEGORIES)
        else:
            logger.info("Already at the last video")
            return self.get_current_video(), *[None] * len(ANNOTATION_CATEGORIES)
    
    def prev_video(self, *current_annotations):
        # Save current annotations before moving to previous video
        if self.video_files:
            annotations_dict = {}
            for i, category in enumerate(ANNOTATION_CATEGORIES.keys()):
                if current_annotations[i]:
                    annotations_dict[category] = current_annotations[i]
            
            if annotations_dict:
                self.save_annotation(annotations_dict)
        
        # Move to previous video
        if self.current_video_idx > 0:
            self.current_video_idx -= 1
            logger.info(f"Moving to previous video (index: {self.current_video_idx})")
            return self.get_current_video(), *[None] * len(ANNOTATION_CATEGORIES)
        else:
            logger.info("Already at the first video")
            return self.get_current_video(), *[None] * len(ANNOTATION_CATEGORIES)

def create_interface():
    annotator = VideoAnnotator()
    success = annotator.load_videos_from_hf()
    
    if not success:
        logger.error("Failed to load videos. Using demo mode with sample video.")
        # In real app, you might want to provide a sample video or show an error
    
    with gr.Blocks() as demo:
        gr.Markdown("# Cricket Video Annotation Tool")
        
        with gr.Row():
            video_player = gr.Video(label="Current Video")
        
        annotation_components = []
        
        with gr.Row():
            with gr.Column():
                for category, options in list(ANNOTATION_CATEGORIES.items())[:4]:
                    radio = gr.Radio(
                        choices=options,
                        label=category,
                        info=f"Select {category}"
                    )
                    annotation_components.append(radio)
            
            with gr.Column():
                for category, options in list(ANNOTATION_CATEGORIES.items())[4:]:
                    radio = gr.Radio(
                        choices=options,
                        label=category,
                        info=f"Select {category}"
                    )
                    annotation_components.append(radio)
        
        with gr.Row():
            prev_btn = gr.Button("Previous Video")
            save_btn = gr.Button("Save Annotations", variant="primary")
            next_btn = gr.Button("Next Video")
            
        # Initialize with first video
        current_video = annotator.get_current_video()
        if current_video:
            video_player.value = current_video
            
            # Try to load existing annotations
            existing_annotations = annotator.load_existing_annotation()
            if existing_annotations:
                for i, category in enumerate(ANNOTATION_CATEGORIES.keys()):
                    if category in existing_annotations:
                        annotation_components[i].value = existing_annotations[category]
        
        # Event handlers
        save_btn.click(
            fn=annotator.save_annotation,
            inputs=[gr.Group(annotation_components)],
            outputs=gr.Textbox(label="Status")
        )
        
        next_btn.click(
            fn=annotator.next_video,
            inputs=annotation_components,
            outputs=[video_player] + annotation_components
        )
        
        prev_btn.click(
            fn=annotator.prev_video,
            inputs=annotation_components,
            outputs=[video_player] + annotation_components
        )
        
    return demo

if __name__ == "__main__":
    demo = create_interface()
    demo.launch()
    # Add a local video for testing if no videos are loaded from Hugging Face