xx
Browse files
    	
        app.py
    CHANGED
    
    | @@ -1,22 +1,29 @@ | |
| 1 | 
            -
             | 
|  | |
| 2 | 
             
            from pydantic import BaseModel
         | 
| 3 | 
             
            from transformers import AutoTokenizer, AutoModelForCausalLM
         | 
| 4 | 
             
            import torch
         | 
| 5 |  | 
| 6 | 
             
            app = FastAPI()
         | 
| 7 |  | 
|  | |
|  | |
|  | |
| 8 | 
             
            # Charger le modèle
         | 
| 9 | 
             
            model_name = "google/medgemma-4b-pt"
         | 
| 10 | 
             
            tokenizer = AutoTokenizer.from_pretrained(model_name)
         | 
| 11 | 
             
            model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
         | 
| 12 |  | 
| 13 | 
            -
            #  | 
| 14 | 
            -
            class  | 
| 15 | 
             
                prompt: str
         | 
| 16 |  | 
| 17 | 
             
            @app.post("/generate")
         | 
| 18 | 
            -
            def generate( | 
| 19 | 
            -
                 | 
|  | |
|  | |
|  | |
| 20 | 
             
                with torch.no_grad():
         | 
| 21 | 
             
                    outputs = model.generate(**inputs, max_new_tokens=100)
         | 
| 22 | 
             
                result = tokenizer.decode(outputs[0], skip_special_tokens=True)
         | 
|  | |
| 1 | 
            +
            import os
         | 
| 2 | 
            +
            from fastapi import FastAPI, Request, HTTPException, Header
         | 
| 3 | 
             
            from pydantic import BaseModel
         | 
| 4 | 
             
            from transformers import AutoTokenizer, AutoModelForCausalLM
         | 
| 5 | 
             
            import torch
         | 
| 6 |  | 
| 7 | 
             
            app = FastAPI()
         | 
| 8 |  | 
| 9 | 
            +
            # Récupérer le token depuis les variables d’environnement
         | 
| 10 | 
            +
            API_TOKEN = os.environ.get("API_TOKEN")
         | 
| 11 | 
            +
             | 
| 12 | 
             
            # Charger le modèle
         | 
| 13 | 
             
            model_name = "google/medgemma-4b-pt"
         | 
| 14 | 
             
            tokenizer = AutoTokenizer.from_pretrained(model_name)
         | 
| 15 | 
             
            model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
         | 
| 16 |  | 
| 17 | 
            +
            # Modèle de requête
         | 
| 18 | 
            +
            class GenerationRequest(BaseModel):
         | 
| 19 | 
             
                prompt: str
         | 
| 20 |  | 
| 21 | 
             
            @app.post("/generate")
         | 
| 22 | 
            +
            async def generate(request_data: GenerationRequest, authorization: str = Header(None)):
         | 
| 23 | 
            +
                if authorization != f"Bearer {API_TOKEN}":
         | 
| 24 | 
            +
                    raise HTTPException(status_code=401, detail="Unauthorized")
         | 
| 25 | 
            +
             | 
| 26 | 
            +
                inputs = tokenizer(request_data.prompt, return_tensors="pt").to(model.device)
         | 
| 27 | 
             
                with torch.no_grad():
         | 
| 28 | 
             
                    outputs = model.generate(**inputs, max_new_tokens=100)
         | 
| 29 | 
             
                result = tokenizer.decode(outputs[0], skip_special_tokens=True)
         |