Spaces:
Runtime error
Runtime error
| import numpy as np | |
| import random | |
| import torch | |
| def set_seed(seed: int, deterministic: bool = False): | |
| """ | |
| Helper function for reproducible behavior to set the seed in `random`, `numpy`, `torch`. | |
| Args: | |
| seed (`int`): | |
| The seed to set. | |
| deterministic (`bool`, *optional*, defaults to `False`): | |
| Whether to use deterministic algorithms where available. Can slow down training. | |
| """ | |
| random.seed(seed) | |
| np.random.seed(seed) | |
| torch.manual_seed(seed) | |
| torch.cuda.manual_seed_all(seed) | |
| if deterministic: | |
| torch.use_deterministic_algorithms(True) | |
| def merge_dict_list(dict_list): | |
| if len(dict_list) == 1: | |
| return dict_list[0] | |
| merged_dict = {} | |
| for k, v in dict_list[0].items(): | |
| if isinstance(v, torch.Tensor): | |
| if v.ndim == 0: | |
| merged_dict[k] = torch.stack([d[k] for d in dict_list], dim=0) | |
| else: | |
| merged_dict[k] = torch.cat([d[k] for d in dict_list], dim=0) | |
| else: | |
| # for non-tensor values, we just copy the value from the first item | |
| merged_dict[k] = v | |
| return merged_dict | |