Spaces:
Runtime error
Runtime error
first release detecting signature
Browse files- .gitignore +2 -0
- app.py +67 -0
- data/photologo-1-1.jpg +0 -0
- data/times-square.jpg +0 -0
- requirements.txt +10 -0
.gitignore
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
.idea
|
| 2 |
+
output
|
app.py
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import PIL.Image
|
| 2 |
+
import gradio as gr
|
| 3 |
+
|
| 4 |
+
import numpy as np
|
| 5 |
+
from craft_text_detector import Craft
|
| 6 |
+
|
| 7 |
+
craft = Craft(output_dir='output', crop_type="box", cuda=True, export_extra=True)
|
| 8 |
+
|
| 9 |
+
dw=0.3
|
| 10 |
+
dh=0.25
|
| 11 |
+
def is_nw(box):
|
| 12 |
+
"""
|
| 13 |
+
A box happen to be a 4-pixel list in order
|
| 14 |
+
1 -- 2
|
| 15 |
+
4 -- 3
|
| 16 |
+
"""
|
| 17 |
+
return box[2][0]<=dw and box[2][1]<= dh
|
| 18 |
+
|
| 19 |
+
def is_ne(box):
|
| 20 |
+
return box[3][0]>=1-dw and box[3][1]<= dh
|
| 21 |
+
|
| 22 |
+
def is_se(box):
|
| 23 |
+
return box[0][0]>=1-dw and box[0][1]>= 1-dh
|
| 24 |
+
|
| 25 |
+
def is_sw(box):
|
| 26 |
+
return box[1][0]<=dw and box[1][1]>= 1-dh
|
| 27 |
+
|
| 28 |
+
def is_corner(box)->bool:
|
| 29 |
+
""" @:returns true if the box is located in any corner """
|
| 30 |
+
return is_nw(box) or is_ne(box) or is_se(box) or is_sw(box)
|
| 31 |
+
|
| 32 |
+
dhhf=0.2 # dh for header and footer
|
| 33 |
+
def is_footer(box)->bool:
|
| 34 |
+
""" true if for the 2 first points, y>0.8 """
|
| 35 |
+
return box[0][1]>=1-dhhf and box[1][1]>=1-dhhf
|
| 36 |
+
|
| 37 |
+
def is_header(box)->bool:
|
| 38 |
+
""" true if for the 2 last points, y<0.2 """
|
| 39 |
+
return box[2][1]<=dhhf and box[3][1]<=dhhf
|
| 40 |
+
|
| 41 |
+
def is_signature(prediction_result) -> bool:
|
| 42 |
+
""" true if any of the boxes is at any corner """
|
| 43 |
+
for box in prediction_result['boxes_as_ratios']:
|
| 44 |
+
if is_corner(box) or is_header(box) or is_footer(box):
|
| 45 |
+
return True
|
| 46 |
+
return False
|
| 47 |
+
|
| 48 |
+
def detect(image: PIL.Image.Image):
|
| 49 |
+
result = craft.detect_text( np.asarray(image))
|
| 50 |
+
return result['boxes'], is_signature(result)
|
| 51 |
+
|
| 52 |
+
def process(image:PIL.Image.Image):
|
| 53 |
+
if image is None:
|
| 54 |
+
return None,0
|
| 55 |
+
boxes,signed = detect( image)
|
| 56 |
+
annotated = PIL.Image.open('output/image_text_detection.png') # image with boxes displayed
|
| 57 |
+
return annotated, len(boxes), signed
|
| 58 |
+
|
| 59 |
+
gr.Interface(
|
| 60 |
+
fn = process,
|
| 61 |
+
inputs = [ gr.Image(type="pil", label="Input") ],
|
| 62 |
+
outputs = [ gr.Image(type="pil", label="Output"), gr.Label(label="nb of text detections"), gr.Label(label="Has signature") ],
|
| 63 |
+
title="Detect signature in image",
|
| 64 |
+
description="Is the photo or image watermarked by a signature?",
|
| 65 |
+
examples=[['data/photologo-1-1.jpg'], ['data/times-square.jpg']],
|
| 66 |
+
allow_flagging="never"
|
| 67 |
+
).launch(debug=True, enable_queue=True)
|
data/photologo-1-1.jpg
ADDED
|
data/times-square.jpg
ADDED
|
requirements.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
Pillow
|
| 3 |
+
opencv-python
|
| 4 |
+
numpy
|
| 5 |
+
PyYAML
|
| 6 |
+
seaborn
|
| 7 |
+
pandas
|
| 8 |
+
matplotlib
|
| 9 |
+
scipy
|
| 10 |
+
psutil
|