Spaces:
Runtime error
Runtime error
check signature with craft_hw_ocr as an option to craft_text_detection
Browse files- app.py +33 -29
- data/photologo-3.jpg +0 -0
app.py
CHANGED
|
@@ -3,7 +3,30 @@ import gradio as gr
|
|
| 3 |
import torch
|
| 4 |
import numpy as np
|
| 5 |
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
dh=0.25
|
| 8 |
def is_nw(box):
|
| 9 |
"""
|
|
@@ -35,41 +58,22 @@ def is_header(box)->bool:
|
|
| 35 |
""" true if for the 2 last points, y<0.2 """
|
| 36 |
return box[2][1]<=dhhf and box[3][1]<=dhhf
|
| 37 |
|
| 38 |
-
def is_signature(prediction_result) -> bool:
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
| 41 |
if is_corner(box) or is_header(box) or is_footer(box):
|
| 42 |
return True
|
| 43 |
return False
|
| 44 |
|
| 45 |
-
def detect_with_craft_text_detector(image: PIL.Image.Image):
|
| 46 |
-
from craft_text_detector import Craft
|
| 47 |
-
craft = Craft(output_dir='output', crop_type="box", cuda=torch.cuda.is_available(), export_extra=True)
|
| 48 |
-
result = craft.detect_text( np.asarray(image))
|
| 49 |
-
annotated = PIL.Image.open('output/image_text_detection.png') # image with boxes displayed
|
| 50 |
-
return annotated, result['boxes'], is_signature(result)
|
| 51 |
-
|
| 52 |
-
def detect_with_craft_hw_ocr(image: PIL.Image.Image):
|
| 53 |
-
image = np.asarray(image)
|
| 54 |
-
from craft_hw_ocr import OCR
|
| 55 |
-
ocr = OCR.load_models()
|
| 56 |
-
image, results = OCR.detection(image, ocr[2])
|
| 57 |
-
bboxes, _ = OCR.recoginition(image, results, ocr[0], ocr[1])
|
| 58 |
-
annotated = OCR.visualize(image, results)
|
| 59 |
-
return annotated, bboxes, False
|
| 60 |
-
|
| 61 |
-
def process(image:PIL.Image.Image, lib:str):
|
| 62 |
-
if image is None:
|
| 63 |
-
return None,0,False
|
| 64 |
-
annotated, boxes, signed = detect_with_craft_text_detector(image) if lib=='craft_text_detector' else detect_with_craft_hw_ocr( image)
|
| 65 |
-
return annotated, len(boxes), signed
|
| 66 |
-
|
| 67 |
gr.Interface(
|
| 68 |
fn = process,
|
| 69 |
-
inputs = [ gr.Image(
|
| 70 |
-
outputs = [ gr.Image(
|
| 71 |
title="Detect signature in image",
|
| 72 |
description="Is the photo or image watermarked by a signature?",
|
| 73 |
-
examples=[['data/photologo-1-1.jpg'], ['data/times-square.jpg']],
|
| 74 |
allow_flagging="never"
|
| 75 |
).launch(debug=True, enable_queue=True)
|
|
|
|
| 3 |
import torch
|
| 4 |
import numpy as np
|
| 5 |
|
| 6 |
+
def detect_with_craft_text_detector(image: np.ndarray):
|
| 7 |
+
from craft_text_detector import Craft
|
| 8 |
+
craft = Craft(output_dir='output', crop_type="box", cuda=torch.cuda.is_available(), export_extra=True)
|
| 9 |
+
result = craft.detect_text( image)
|
| 10 |
+
annotated = PIL.Image.open('output/image_text_detection.png') # image with boxes displayed
|
| 11 |
+
return annotated, result['boxes'], is_signature(result['boxes_as_ratios'])
|
| 12 |
+
|
| 13 |
+
def detect_with_craft_hw_ocr(image: np.ndarray):
|
| 14 |
+
from craft_hw_ocr import OCR
|
| 15 |
+
ocr = OCR.load_models()
|
| 16 |
+
image, results = OCR.detection(image, ocr[2])
|
| 17 |
+
bboxes, _ = OCR.recoginition(image, results, ocr[0], ocr[1])
|
| 18 |
+
h,w,_=np.shape(image) # third dimension is color channel
|
| 19 |
+
annotated = OCR.visualize(image, results)
|
| 20 |
+
m=(np.asarray([w,h]))[np.newaxis,np.newaxis,:]
|
| 21 |
+
return annotated, bboxes, is_signature(bboxes/m)
|
| 22 |
+
|
| 23 |
+
def process(image:np.ndarray, lib:str):
|
| 24 |
+
if image is None:
|
| 25 |
+
return None,'',''
|
| 26 |
+
annotated, boxes, signed = detect_with_craft_text_detector(image) if lib=='craft_text_detector' else detect_with_craft_hw_ocr( image)
|
| 27 |
+
return annotated, len(boxes), signed
|
| 28 |
+
|
| 29 |
+
dw=0.3 # width ratio
|
| 30 |
dh=0.25
|
| 31 |
def is_nw(box):
|
| 32 |
"""
|
|
|
|
| 58 |
""" true if for the 2 last points, y<0.2 """
|
| 59 |
return box[2][1]<=dhhf and box[3][1]<=dhhf
|
| 60 |
|
| 61 |
+
# def is_signature(prediction_result) -> bool:
|
| 62 |
+
def is_signature(boxes) -> bool:
|
| 63 |
+
""" true if any of the boxes is at any corner, or header or footer """
|
| 64 |
+
for box in boxes:
|
| 65 |
+
if box[1][0]-box[0][0]<0.05: # not large enough
|
| 66 |
+
continue
|
| 67 |
if is_corner(box) or is_header(box) or is_footer(box):
|
| 68 |
return True
|
| 69 |
return False
|
| 70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
gr.Interface(
|
| 72 |
fn = process,
|
| 73 |
+
inputs = [ gr.Image(label="Input"), gr.inputs.Radio(label='Model', choices=["craft_text_detector", "craft_hw_ocr"], default='craft_text_detector') ],
|
| 74 |
+
outputs = [ gr.Image(label="Output"), gr.Label(label="nb of text detections"), gr.Label(label="Has signature") ],
|
| 75 |
title="Detect signature in image",
|
| 76 |
description="Is the photo or image watermarked by a signature?",
|
| 77 |
+
examples=[['data/photologo-1-1.jpg'], ['data/times-square.jpg'], ['data/photologo-3.jpg']],
|
| 78 |
allow_flagging="never"
|
| 79 |
).launch(debug=True, enable_queue=True)
|
data/photologo-3.jpg
ADDED
|