import gradio as gr import numpy as np from datasets import load_dataset speech_commands = load_dataset("speech_commands", "v0.02", split="test") id2label = speech_commands.features["label"].int2str def generate_audio(): example = speech_commands.shuffle()[0] audio = example["audio"] return (audio["sampling_rate"], (audio["array"] * 32_767).astype(np.int16)), id2label(example["label"]) with gr.Blocks() as demo: with gr.Column(): for _ in range(4): audio, label = generate_audio() output = gr.Audio(audio, label=label) demo.launch()