Spaces:
Build error
Build error
Anshoo Mehra
commited on
Commit
·
db60c4c
1
Parent(s):
cb8c28c
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,6 +6,7 @@ from transformers import (
|
|
| 6 |
AutoTokenizer
|
| 7 |
)
|
| 8 |
|
|
|
|
| 9 |
M1 = "anshoomehra/question-generation-auto-t5-v1-base-s-q"
|
| 10 |
M2 = "anshoomehra/question-generation-auto-t5-v1-base-s-q-c"
|
| 11 |
|
|
@@ -14,6 +15,9 @@ M5 = "anshoomehra/question-generation-auto-hints-t5-v1-base-s-q-c"
|
|
| 14 |
|
| 15 |
device = ['cuda' if torch.cuda.is_available() else 'cpu'][0]
|
| 16 |
|
|
|
|
|
|
|
|
|
|
| 17 |
_m1 = AutoModelForSeq2SeqLM.from_pretrained(M1).to(device)
|
| 18 |
_tk1 = AutoTokenizer.from_pretrained(M1, cache_dir="./cache")
|
| 19 |
|
|
@@ -48,6 +52,7 @@ def _formatQs(questions):
|
|
| 48 |
|
| 49 |
def _generate(mode, context, hint=None, minLength=50, maxLength=500, lengthPenalty=2.0, earlyStopping=True, numReturnSequences=1, numBeams=2, noRepeatNGramSize=0, doSample=False, topK=0, topP=0, temperature=0):
|
| 50 |
|
|
|
|
| 51 |
predictionM1 = None
|
| 52 |
predictionM2 = None
|
| 53 |
predictionM4 = None
|
|
@@ -55,7 +60,23 @@ def _generate(mode, context, hint=None, minLength=50, maxLength=500, lengthPenal
|
|
| 55 |
|
| 56 |
if mode == 'Auto':
|
| 57 |
_inputText = "question_context: " + context
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
_encoding = _tk1.encode(_inputText, return_tensors='pt', truncation=True, padding='max_length').to(device) # max_length=1024
|
| 60 |
_outputEncoded = _m1.generate(_encoding,
|
| 61 |
min_length=minLength,
|
|
@@ -119,7 +140,6 @@ def _generate(mode, context, hint=None, minLength=50, maxLength=500, lengthPenal
|
|
| 119 |
temperature=temperature
|
| 120 |
)
|
| 121 |
predictionM5 = [_tk5.decode(id, clean_up_tokenization_spaces=False, skip_special_tokens=True) for id in _outputEncoded]
|
| 122 |
-
|
| 123 |
elif mode == 'Hints':
|
| 124 |
_inputText = "question_hint: " + hint + "</s>question_context: " + context
|
| 125 |
|
|
@@ -155,12 +175,13 @@ def _generate(mode, context, hint=None, minLength=50, maxLength=500, lengthPenal
|
|
| 155 |
)
|
| 156 |
predictionM5 = [_tk5.decode(id, clean_up_tokenization_spaces=False, skip_special_tokens=True) for id in _outputEncoded]
|
| 157 |
|
|
|
|
| 158 |
predictionM1 = _formatQs(predictionM1)
|
| 159 |
predictionM2 = _formatQs(predictionM2)
|
| 160 |
predictionM4 = _formatQs(predictionM4)
|
| 161 |
predictionM5 = _formatQs(predictionM5)
|
| 162 |
-
|
| 163 |
-
return
|
| 164 |
|
| 165 |
with gr.Blocks() as demo:
|
| 166 |
|
|
@@ -199,12 +220,13 @@ with gr.Blocks() as demo:
|
|
| 199 |
with gr.Row(variant='compact'):
|
| 200 |
_predictionM2 = gr.Textbox(label="Predicted Questions - question-generation-auto-t5-v1-base-s-q-c [No Hints]")
|
| 201 |
_predictionM1 = gr.Textbox(label="Predicted Questions - question-generation-auto-t5-v1-base-s-q [No Hints]")
|
|
|
|
| 202 |
|
| 203 |
with gr.Row():
|
| 204 |
gen_btn = gr.Button("Generate Questions")
|
| 205 |
gen_btn.click(fn=_generate,
|
| 206 |
inputs=[mode, context, hint, minLength, maxLength, lengthPenalty, earlyStopping, numReturnSequences, numBeams, noRepeatNGramSize, doSample, topK, topP, temperature],
|
| 207 |
-
outputs=[
|
| 208 |
)
|
| 209 |
|
| 210 |
demo.launch(show_error=True)
|
|
|
|
| 6 |
AutoTokenizer
|
| 7 |
)
|
| 8 |
|
| 9 |
+
M0 = "anshoomehra/question-generation-auto-t5-v1-base-s"
|
| 10 |
M1 = "anshoomehra/question-generation-auto-t5-v1-base-s-q"
|
| 11 |
M2 = "anshoomehra/question-generation-auto-t5-v1-base-s-q-c"
|
| 12 |
|
|
|
|
| 15 |
|
| 16 |
device = ['cuda' if torch.cuda.is_available() else 'cpu'][0]
|
| 17 |
|
| 18 |
+
_m0 = AutoModelForSeq2SeqLM.from_pretrained(M0).to(device)
|
| 19 |
+
_tk0 = AutoTokenizer.from_pretrained(M0, cache_dir="./cache")
|
| 20 |
+
|
| 21 |
_m1 = AutoModelForSeq2SeqLM.from_pretrained(M1).to(device)
|
| 22 |
_tk1 = AutoTokenizer.from_pretrained(M1, cache_dir="./cache")
|
| 23 |
|
|
|
|
| 52 |
|
| 53 |
def _generate(mode, context, hint=None, minLength=50, maxLength=500, lengthPenalty=2.0, earlyStopping=True, numReturnSequences=1, numBeams=2, noRepeatNGramSize=0, doSample=False, topK=0, topP=0, temperature=0):
|
| 54 |
|
| 55 |
+
predictionM0 = None
|
| 56 |
predictionM1 = None
|
| 57 |
predictionM2 = None
|
| 58 |
predictionM4 = None
|
|
|
|
| 60 |
|
| 61 |
if mode == 'Auto':
|
| 62 |
_inputText = "question_context: " + context
|
| 63 |
+
|
| 64 |
+
_encoding = _tk0.encode(_inputText, return_tensors='pt', truncation=True, padding='max_length').to(device) # max_length=1024
|
| 65 |
+
_outputEncoded = _m0.generate(_encoding,
|
| 66 |
+
min_length=minLength,
|
| 67 |
+
max_length=maxLength,
|
| 68 |
+
length_penalty=lengthPenalty,
|
| 69 |
+
early_stopping=earlyStopping,
|
| 70 |
+
num_return_sequences=numReturnSequences,
|
| 71 |
+
num_beams=numBeams,
|
| 72 |
+
no_repeat_ngram_size=noRepeatNGramSize,
|
| 73 |
+
do_sample=doSample,
|
| 74 |
+
top_k=topK,
|
| 75 |
+
top_p=topP,
|
| 76 |
+
temperature=temperature
|
| 77 |
+
)
|
| 78 |
+
predictionM0 = [_tk0.decode(id, clean_up_tokenization_spaces=False, skip_special_tokens=True) for id in _outputEncoded]
|
| 79 |
+
|
| 80 |
_encoding = _tk1.encode(_inputText, return_tensors='pt', truncation=True, padding='max_length').to(device) # max_length=1024
|
| 81 |
_outputEncoded = _m1.generate(_encoding,
|
| 82 |
min_length=minLength,
|
|
|
|
| 140 |
temperature=temperature
|
| 141 |
)
|
| 142 |
predictionM5 = [_tk5.decode(id, clean_up_tokenization_spaces=False, skip_special_tokens=True) for id in _outputEncoded]
|
|
|
|
| 143 |
elif mode == 'Hints':
|
| 144 |
_inputText = "question_hint: " + hint + "</s>question_context: " + context
|
| 145 |
|
|
|
|
| 175 |
)
|
| 176 |
predictionM5 = [_tk5.decode(id, clean_up_tokenization_spaces=False, skip_special_tokens=True) for id in _outputEncoded]
|
| 177 |
|
| 178 |
+
predictionM0 = _formatQs(predictionM0)
|
| 179 |
predictionM1 = _formatQs(predictionM1)
|
| 180 |
predictionM2 = _formatQs(predictionM2)
|
| 181 |
predictionM4 = _formatQs(predictionM4)
|
| 182 |
predictionM5 = _formatQs(predictionM5)
|
| 183 |
+
|
| 184 |
+
return predictionM5, predictionM4, predictionM2, predictionM1, predictionM0
|
| 185 |
|
| 186 |
with gr.Blocks() as demo:
|
| 187 |
|
|
|
|
| 220 |
with gr.Row(variant='compact'):
|
| 221 |
_predictionM2 = gr.Textbox(label="Predicted Questions - question-generation-auto-t5-v1-base-s-q-c [No Hints]")
|
| 222 |
_predictionM1 = gr.Textbox(label="Predicted Questions - question-generation-auto-t5-v1-base-s-q [No Hints]")
|
| 223 |
+
_predictionM0 = gr.Textbox(label="Predicted Questions - question-generation-auto-t5-v1-base-s-q [No Hints]")
|
| 224 |
|
| 225 |
with gr.Row():
|
| 226 |
gen_btn = gr.Button("Generate Questions")
|
| 227 |
gen_btn.click(fn=_generate,
|
| 228 |
inputs=[mode, context, hint, minLength, maxLength, lengthPenalty, earlyStopping, numReturnSequences, numBeams, noRepeatNGramSize, doSample, topK, topP, temperature],
|
| 229 |
+
outputs=[_predictionM5, _predictionM4, _predictionM2, _predictionM1, _predictionM0]
|
| 230 |
)
|
| 231 |
|
| 232 |
demo.launch(show_error=True)
|