File size: 24,987 Bytes
4e10023 0c9134e 4e10023 83df634 97bafdb 255b6fc 83df634 255b6fc 68f41f4 4e10023 1ba257c 4e10023 8d9c495 4e10023 8d9c495 4e10023 db8cd85 172b424 1ba257c 4e10023 172b424 4e10023 0c9134e 4e10023 8d9c495 4e10023 0c9134e 8208c22 4e10023 8d9c495 4e10023 172b424 4e10023 8d9c495 1ba257c 4e10023 8d9c495 4e10023 8208c22 1ba257c 8d9c495 1ba257c 172b424 1ba257c 172b424 0c9134e 172b424 0c9134e 172b424 0c9134e 172b424 cb5d5f8 db8cd85 cb5d5f8 db8cd85 cb5d5f8 db8cd85 cb5d5f8 db8cd85 0c9134e db8cd85 172b424 1ba257c 8208c22 1ba257c 4e10023 1ba257c 4e10023 1ba257c 4e10023 8d9c495 4e10023 0c9134e 4e10023 8d9c495 4e10023 8d9c495 1ba257c 8d9c495 4e10023 1ba257c 8d9c495 1ba257c 8d9c495 4e10023 1ba257c 4e10023 1ba257c 4e10023 1ba257c 4e10023 1ba257c 4e10023 0c9134e 4e10023 1ba257c 4e10023 1ba257c 4e10023 68f41f4 e46cec3 68f41f4 8d9c495 68f41f4 4e10023 8d9c495 68f41f4 4e10023 8d9c495 68f41f4 8d9c495 68f41f4 4e10023 68f41f4 4e10023 68f41f4 4e10023 84eb396 8d9c495 4e10023 8d9c495 4e10023 8d9c495 4e10023 8d9c495 4e10023 68f41f4 4e10023 09c9042 68f41f4 09c9042 68f41f4 09c9042 68f41f4 09c9042 2cd680b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 |
"""
FastAPI Backend AI Service using Mistral Nemo Instruct
Provides OpenAI-compatible chat completion endpoints powered by unsloth/Mistral-Nemo-Instruct-2407
"""
import os
import warnings
# Suppress warnings before any other imports
warnings.filterwarnings("ignore", category=FutureWarning, module="transformers")
warnings.filterwarnings("ignore", message=".*slow image processor.*")
warnings.filterwarnings("ignore", message=".*rope_scaling.*")
# Direct Hugging Face caches to a writable folder under /tmp (use only HF_HOME, TRANSFORMERS_CACHE is deprecated)
os.environ.setdefault("HF_HOME", "/tmp/.cache/huggingface")
# Suppress advisory warnings from transformers (including deprecation warnings)
os.environ["TRANSFORMERS_NO_ADVISORY_WARNINGS"] = "1"
hf_token = os.environ.get("HF_TOKEN")
import asyncio
import logging
import time
from contextlib import asynccontextmanager
from typing import List, Dict, Any, Optional, Union
from fastapi import FastAPI, HTTPException, Depends, Request
from fastapi.responses import StreamingResponse, JSONResponse
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, Field, field_validator
import uvicorn
import requests
from PIL import Image
from transformers import AutoTokenizer, AutoModelForCausalLM
# Transformers imports (now required)
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM, AutoConfig # type: ignore
from transformers import BitsAndBytesConfig # type: ignore
import torch
transformers_available = True
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Check for optional quantization support
try:
import bitsandbytes as bnb
quantization_available = True
logger.info("β
BitsAndBytes quantization support available")
except ImportError:
quantization_available = False
logger.warning("β οΈ BitsAndBytes not available - 4-bit models will use standard loading")
# Pydantic models for multimodal content
class TextContent(BaseModel):
type: str = Field(default="text", description="Content type")
text: str = Field(..., description="Text content")
@field_validator('type')
@classmethod
def validate_type(cls, v: str) -> str:
if v != "text":
raise ValueError("Type must be 'text'")
return v
class ImageContent(BaseModel):
type: str = Field(default="image", description="Content type")
url: str = Field(..., description="Image URL")
@field_validator('type')
@classmethod
def validate_type(cls, v: str) -> str:
if v != "image":
raise ValueError("Type must be 'image'")
return v
# Pydantic models for OpenAI-compatible API
class ChatMessage(BaseModel):
role: str = Field(..., description="The role of the message author")
content: Union[str, List[Union[TextContent, ImageContent]]] = Field(..., description="The content of the message - either string or list of content items")
@field_validator('role')
@classmethod
def validate_role(cls, v: str) -> str:
if v not in ["system", "user", "assistant"]:
raise ValueError("Role must be one of: system, user, assistant")
return v
class ChatCompletionRequest(BaseModel):
model: str = Field(default_factory=lambda: os.environ.get("AI_MODEL", "unsloth/Mistral-Nemo-Instruct-2407"), description="The model to use for completion")
messages: List[ChatMessage] = Field(..., description="List of messages in the conversation")
max_tokens: Optional[int] = Field(default=512, ge=1, le=2048, description="Maximum tokens to generate")
temperature: Optional[float] = Field(default=0.7, ge=0.0, le=2.0, description="Sampling temperature")
stream: Optional[bool] = Field(default=False, description="Whether to stream responses")
top_p: Optional[float] = Field(default=0.95, ge=0.0, le=1.0, description="Top-p sampling")
class ChatCompletionChoice(BaseModel):
index: int
message: ChatMessage
finish_reason: str
class ChatCompletionResponse(BaseModel):
id: str
object: str = "chat.completion"
created: int
model: str
choices: List[ChatCompletionChoice]
class ChatCompletionChunk(BaseModel):
id: str
object: str = "chat.completion.chunk"
created: int
model: str
choices: List[Dict[str, Any]]
class HealthResponse(BaseModel):
status: str
model: str
version: str
class ModelInfo(BaseModel):
id: str
object: str = "model"
created: int
owned_by: str = "huggingface"
class ModelsResponse(BaseModel):
object: str = "list"
data: List[ModelInfo]
class CompletionRequest(BaseModel):
prompt: str = Field(..., description="The prompt to complete")
max_tokens: Optional[int] = Field(default=512, ge=1, le=2048)
temperature: Optional[float] = Field(default=0.7, ge=0.0, le=2.0)
# Global variables for model management
# Model can be configured via environment variable - defaults to Mistral Nemo Instruct
current_model = os.environ.get("AI_MODEL", "unsloth/Mistral-Nemo-Instruct-2407")
vision_model = os.environ.get("VISION_MODEL", "Salesforce/blip-image-captioning-base")
tokenizer = None
model = None
image_text_pipeline = None # type: ignore
def get_quantization_config(model_name: str):
"""Get quantization config for 4-bit models"""
if not quantization_available:
return None
# Check if this is a 4-bit model that should use quantization
is_4bit_model = (
"4bit" in model_name.lower() or
"bnb" in model_name.lower() or
"unsloth" in model_name.lower()
)
if is_4bit_model:
logger.info(f"π§ Configuring 4-bit quantization for {model_name}")
return BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
)
return None
# Image processing utilities
async def download_image(url: str) -> Image.Image:
"""Download and process image from URL"""
try:
response = requests.get(url, timeout=10)
response.raise_for_status()
image = Image.open(requests.compat.BytesIO(response.content)) # type: ignore
return image
except Exception as e:
logger.error(f"Failed to download image from {url}: {e}")
raise HTTPException(status_code=400, detail=f"Failed to download image: {str(e)}")
def extract_text_and_images(content: Union[str, List[Any]]) -> tuple[str, List[str]]:
"""Extract text and image URLs from message content"""
if isinstance(content, str):
return content, []
text_parts: List[str] = []
image_urls: List[str] = []
for item in content:
if hasattr(item, 'type'):
if item.type == "text" and hasattr(item, 'text'):
text_parts.append(str(item.text))
elif item.type == "image" and hasattr(item, 'url'):
image_urls.append(str(item.url))
return " ".join(text_parts), image_urls
def has_images(messages: List[ChatMessage]) -> bool:
"""Check if any messages contain images"""
for message in messages:
if isinstance(message.content, list):
for item in message.content:
if hasattr(item, 'type') and item.type == "image":
return True
return False
@asynccontextmanager
async def lifespan(app: FastAPI):
"""Application lifespan manager for startup and shutdown events"""
global tokenizer, model, image_text_pipeline
logger.info("π Starting AI Backend Service...")
try:
# Load tokenizer and model directly from HuggingFace repo (standard transformers format)
logger.info(f"π₯ Loading tokenizer from {current_model}...")
tokenizer = AutoTokenizer.from_pretrained(current_model)
# Get quantization config if needed
quantization_config = get_quantization_config(current_model)
logger.info(f"π₯ Loading model from {current_model}...")
try:
if quantization_config:
logger.info("π§ Attempting 4-bit quantization")
model = AutoModelForCausalLM.from_pretrained(
current_model,
quantization_config=quantization_config,
device_map="auto",
torch_dtype=torch.bfloat16, # Use BF16 for better Mistral Nemo performance
low_cpu_mem_usage=True,
trust_remote_code=True,
)
else:
logger.info("π₯ Using standard model loading with optimized settings")
model = AutoModelForCausalLM.from_pretrained(
current_model,
torch_dtype=torch.bfloat16, # Use BF16 for better Mistral Nemo performance
device_map="auto",
low_cpu_mem_usage=True,
trust_remote_code=True,
)
except Exception as quant_error:
if ("CUDA" in str(quant_error) or
"bitsandbytes" in str(quant_error) or
"PackageNotFoundError" in str(quant_error) or
"No package metadata was found for bitsandbytes" in str(quant_error)):
logger.warning(f"β οΈ Quantization failed - bitsandbytes not available or no CUDA: {quant_error}")
logger.info("π Falling back to standard model loading, ignoring pre-quantized config")
# For pre-quantized models, we need to load config first and remove quantization
try:
logger.info("π§ Loading model config to remove quantization settings")
config = AutoConfig.from_pretrained(current_model, trust_remote_code=True)
# Remove any quantization configuration from the config
if hasattr(config, 'quantization_config'):
logger.info("π« Removing quantization_config from model config")
config.quantization_config = None
model = AutoModelForCausalLM.from_pretrained(
current_model,
config=config,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
trust_remote_code=True,
device_map="cpu", # Force CPU when quantization fails
)
except Exception as fallback_error:
logger.warning(f"β οΈ Config-based loading failed: {fallback_error}")
logger.info("π Trying standard loading without quantization config")
try:
model = AutoModelForCausalLM.from_pretrained(
current_model,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
trust_remote_code=True,
device_map="cpu",
)
except Exception as standard_error:
logger.warning(f"β οΈ Standard loading also failed: {standard_error}")
logger.info("π Trying with minimal configuration - bypassing all quantization")
# Ultimate fallback: Load without any custom config
try:
model = AutoModelForCausalLM.from_pretrained(
current_model,
trust_remote_code=True,
)
except Exception as minimal_error:
logger.warning(f"β οΈ Minimal loading also failed: {minimal_error}")
logger.info("π Final fallback: Using deployment-friendly default model")
# If this specific model absolutely cannot load, fallback to a reliable alternative
fallback_model = "microsoft/DialoGPT-medium"
logger.info(f"π₯ Loading fallback model: {fallback_model}")
tokenizer = AutoTokenizer.from_pretrained(fallback_model)
model = AutoModelForCausalLM.from_pretrained(fallback_model)
logger.info(f"β
Successfully loaded fallback model: {fallback_model}")
# Update current_model to reflect what we actually loaded
import backend_service
backend_service.current_model = fallback_model
else:
raise quant_error
logger.info(f"β
Successfully loaded model and tokenizer: {current_model}")
# Load image pipeline for multimodal support
try:
logger.info(f"πΌοΈ Initializing image captioning pipeline with model: {vision_model}")
image_text_pipeline = pipeline("image-to-text", model=vision_model)
logger.info("β
Image captioning pipeline loaded successfully")
except Exception as e:
logger.warning(f"β οΈ Could not load image captioning pipeline: {e}")
image_text_pipeline = None
except Exception as e:
logger.error(f"β Failed to initialize model: {e}")
raise RuntimeError(f"Service initialization failed: {e}")
yield
logger.info("π Shutting down AI Backend Service...")
tokenizer = None
model = None
image_text_pipeline = None
# Initialize FastAPI app
app = FastAPI(
title="AI Backend Service - Mistral Nemo",
description="OpenAI-compatible chat completion API powered by unsloth/Mistral-Nemo-Instruct-2407",
version="1.0.0",
lifespan=lifespan
)
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # Configure appropriately for production
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
def ensure_model_ready():
if tokenizer is None or model is None:
raise HTTPException(status_code=503, detail="Service not ready - model not initialized")
def convert_messages_to_prompt(messages: List[ChatMessage]) -> str:
"""Convert OpenAI messages format to a single prompt string"""
prompt_parts: List[str] = []
for message in messages:
role = message.role
# Extract text content (handle both string and list formats)
if isinstance(message.content, str):
content = message.content
else:
content, _ = extract_text_and_images(message.content)
if role == "system":
prompt_parts.append(f"System: {content}")
elif role == "user":
prompt_parts.append(f"Human: {content}")
elif role == "assistant":
prompt_parts.append(f"Assistant: {content}")
# Add assistant prompt to continue
prompt_parts.append("Assistant:")
return "\n".join(prompt_parts)
async def generate_multimodal_response(
messages: List[ChatMessage],
request: ChatCompletionRequest
) -> str:
"""Generate response using image-text-to-text pipeline for multimodal content"""
if not image_text_pipeline:
raise HTTPException(status_code=503, detail="Image processing not available - pipeline not initialized")
try:
# Find the last user message with images
last_user_message = None
for message in reversed(messages):
if message.role == "user" and isinstance(message.content, list):
last_user_message = message
break
if not last_user_message:
raise HTTPException(status_code=400, detail="No user message with images found")
# Extract text and images from the message
text_content, image_urls = extract_text_and_images(last_user_message.content)
if not image_urls:
raise HTTPException(status_code=400, detail="No images found in the message")
# Use the first image for now (could be extended to handle multiple images)
image_url = image_urls[0]
# Generate response using the image-to-text pipeline
logger.info(f"πΌοΈ Processing image: {image_url}")
try:
# Use the pipeline directly with the image URL (no messages format needed for image-to-text)
result = await asyncio.to_thread(lambda: image_text_pipeline(image_url)) # type: ignore
# Handle response format from image-to-text pipeline
if result and hasattr(result, '__len__') and len(result) > 0: # type: ignore
first_result = result[0] # type: ignore
if hasattr(first_result, 'get'):
generated_text = first_result.get('generated_text', f'I can see an image at {image_url}.') # type: ignore
else:
generated_text = str(first_result)
# Combine with user's text question if provided
if text_content:
response = f"Looking at this image, I can see: {generated_text}. "
if "what" in text_content.lower() or "?" in text_content:
response += f"Regarding your question '{text_content}': Based on what I can see, this appears to be {generated_text.lower()}."
else:
response += f"You mentioned: {text_content}"
return response
else:
return f"I can see: {generated_text}"
else:
return f"I can see there's an image at {image_url}, but cannot process it right now."
except Exception as pipeline_error:
logger.warning(f"Pipeline error: {pipeline_error}")
return f"I can see there's an image at {image_url}. The image appears to contain visual content that I'm having trouble processing right now."
except Exception as e:
logger.error(f"Error in multimodal generation: {e}")
return f"I'm having trouble processing the image. Error: {str(e)}"
def generate_response_local(messages: List[ChatMessage], max_tokens: int = 512, temperature: float = 0.7, top_p: float = 0.95) -> str:
"""Generate response using local model and tokenizer with chat template (following HuggingFace example)."""
ensure_model_ready()
try:
# Convert messages to HuggingFace format for chat template
chat_messages = []
for m in messages:
content_str = m.content if isinstance(m.content, str) else extract_text_and_images(m.content)[0]
chat_messages.append({"role": m.role, "content": content_str})
# Apply chat template exactly as in HuggingFace example
inputs = tokenizer.apply_chat_template(
chat_messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
)
# Move inputs to model device
inputs = inputs.to(model.device)
# Generate response exactly as in HuggingFace example
outputs = model.generate(**inputs, max_new_tokens=max_tokens)
# Decode only the newly generated tokens (exclude input)
generated_text = tokenizer.decode(outputs[0][inputs["input_ids"].shape[-1]:], skip_special_tokens=True)
return generated_text.strip()
except Exception as e:
logger.error(f"Local generation failed: {e}")
return "I apologize, but I'm having trouble generating a response right now. Please try again."
@app.get("/", response_class=JSONResponse)
async def root() -> Dict[str, Any]:
"""Root endpoint with service information"""
return {
"message": "AI Backend Service is running with Mistral Nemo!",
"model": current_model,
"version": "1.0.0",
"endpoints": {
"health": "/health",
"models": "/v1/models",
"chat_completions": "/v1/chat/completions"
}
}
@app.get("/health", response_model=HealthResponse)
async def health_check():
"""Health check endpoint"""
global current_model, tokenizer, model
return HealthResponse(
status="healthy" if (tokenizer is not None and model is not None) else "unhealthy",
model=current_model,
version="1.0.0"
)
@app.get("/v1/models", response_model=ModelsResponse)
async def list_models():
"""List available models (OpenAI-compatible)"""
models = [
ModelInfo(
id=current_model,
created=int(time.time()),
owned_by="huggingface"
)
]
# Add vision model if available
if image_text_pipeline:
models.append(
ModelInfo(
id=vision_model,
created=int(time.time()),
owned_by="huggingface"
)
)
return ModelsResponse(data=models)
# ...existing code...
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse)
async def create_chat_completion(
request: ChatCompletionRequest
) -> ChatCompletionResponse:
"""Create a chat completion (OpenAI-compatible) with multimodal support."""
try:
if not request.messages:
raise HTTPException(status_code=400, detail="Messages cannot be empty")
is_multimodal = has_images(request.messages)
if is_multimodal:
if not image_text_pipeline:
raise HTTPException(status_code=503, detail="Image processing not available")
response_text = await generate_multimodal_response(request.messages, request)
else:
logger.info(f"Generating local response for messages: {request.messages}")
response_text = await asyncio.to_thread(
generate_response_local,
request.messages,
request.max_tokens or 512,
request.temperature or 0.7,
request.top_p or 0.95
)
response_text = response_text.strip() if response_text else "No response generated."
return ChatCompletionResponse(
id=f"chatcmpl-{int(time.time())}",
created=int(time.time()),
model=request.model,
choices=[ChatCompletionChoice(
index=0,
message=ChatMessage(role="assistant", content=response_text),
finish_reason="stop"
)]
)
except Exception as e:
logger.error(f"Error in chat completion: {e}")
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
@app.post("/v1/completions")
async def create_completion(
request: CompletionRequest
) -> Dict[str, Any]:
"""Create a text completion (OpenAI-compatible)"""
try:
if not request.prompt:
raise HTTPException(status_code=400, detail="Prompt cannot be empty")
ensure_model_ready()
# Use the prompt as a single user message
messages = [ChatMessage(role="user", content=request.prompt)]
response_text = await asyncio.to_thread(
generate_response_local,
messages,
request.max_tokens or 512,
request.temperature or 0.7,
0.95
)
return {
"id": f"cmpl-{int(time.time())}",
"object": "text_completion",
"created": int(time.time()),
"model": current_model,
"choices": [{
"text": response_text,
"index": 0,
"finish_reason": "stop"
}]
}
except Exception as e:
logger.error(f"Error in completion: {e}")
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
@app.post("/api/response")
async def api_response(request: Request) -> JSONResponse:
"""Endpoint to receive and send responses via API."""
try:
data = await request.json()
message = data.get("message", "No message provided")
return JSONResponse(content={
"status": "success",
"received_message": message,
"response_message": f"You sent: {message}"
})
except Exception as e:
logger.error(f"Error processing API response: {e}")
raise HTTPException(status_code=500, detail="Internal server error")
# Main entry point moved to the end for proper initialization
if __name__ == "__main__":
import uvicorn
uvicorn.run("backend_service:app", host="0.0.0.0", port=8000, reload=True)
|