File size: 10,518 Bytes
1980540
faeba56
256d47f
 
 
1980540
 
 
3c06087
 
 
 
 
 
1980540
3c06087
 
256d47f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1980540
 
256d47f
1980540
256d47f
 
 
 
1980540
 
b85cff9
 
1980540
 
b85cff9
 
 
 
 
 
3c06087
 
 
256d47f
 
1980540
 
256d47f
 
 
 
1980540
 
3c06087
 
 
 
 
 
 
 
1980540
 
 
256d47f
1980540
256d47f
1980540
 
 
 
256d47f
1980540
 
 
 
 
 
58acb8e
 
3c06087
256d47f
 
 
 
58acb8e
 
256d47f
 
1980540
 
 
256d47f
1980540
256d47f
 
 
1980540
 
 
 
 
 
 
 
256d47f
1980540
256d47f
 
 
1980540
256d47f
1980540
256d47f
 
1980540
 
 
 
 
256d47f
3c06087
 
 
 
1980540
3c06087
 
256d47f
1980540
256d47f
1980540
256d47f
 
 
 
 
1980540
256d47f
1980540
 
6bffd96
 
 
 
 
1980540
6bffd96
 
 
 
 
 
 
 
3c06087
 
 
 
 
 
 
6bffd96
 
3c06087
 
 
6bffd96
3c06087
6bffd96
3c06087
 
 
 
 
 
 
 
 
 
6bffd96
3c06087
 
 
1980540
 
12984b5
b85cff9
 
 
 
 
 
 
 
 
 
 
 
 
 
3c06087
 
 
 
b85cff9
 
 
 
 
 
 
 
 
 
 
3c06087
5c8ec86
 
 
 
 
 
 
 
 
 
 
3c06087
5c8ec86
 
 
 
 
 
 
 
 
 
3c06087
5c8ec86
 
 
 
 
 
 
3c06087
64b1440
1980540
3c06087
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
from dotenv import load_dotenv
import os
import streamlit as st
from streamlit_option_menu import option_menu
import pandas as pd
import base64
from Functions import RFPProcessor
# from localStoragePy import localStoragePy
from Utils import (
    export,
    clear_rfp_data,
    get_binary_file_downloader_html,
    generate_roadmap_image,
)
# from Login_and_email import *
from Proposal import prop
#localStorage = localStoragePy("RFP", "json")

# Initialize session states
if "generated" not in st.session_state:
    st.session_state["generated"] = []
if "past" not in st.session_state:
    st.session_state["past"] = []
if "input" not in st.session_state:
    st.session_state["input"] = ""
if "vectorstore" not in st.session_state:
    st.session_state["vectorstore"] = None
if "rfp_details" not in st.session_state:
    st.session_state["rfp_details"] = ""
if "is_data_processed" not in st.session_state:
    st.session_state["is_data_processed"] = False
if "user_stories" not in st.session_state:
    st.session_state["user_stories"] = ""
if "user_stories_data" not in st.session_state:
    st.session_state["user_stories_data"] = []
if "user_stories_json" not in st.session_state:
    st.session_state["user_stories_json"] = {}
if "is_user_stories_created" not in st.session_state:
    st.session_state["is_user_stories_created"] = False
if "rfp_summary" not in st.session_state:
    st.session_state["rfp_summary"] = ""
if "estimation_data" not in st.session_state:
    st.session_state["estimation_data"] = []
if "estimation_data_json" not in st.session_state:
    st.session_state["estimation_data_json"] = {}
if "is_estimation_data_created" not in st.session_state:
    st.session_state["is_estimation_data_created"] = False
if "roadmap_data" not in st.session_state:
    st.session_state["roadmap_data"] = []
if "roadmap_data_json" not in st.session_state:
    st.session_state["roadmap_data_json"] = []
if "is_roadmap_data_created" not in st.session_state:
    st.session_state["is_roadmap_data_created"] = False
if "is_presentation_created" not in st.session_state:
    st.session_state["is_presentation_created"] = False


def main():
    function = RFPProcessor()

    if "input" not in st.session_state:
        st.session_state["input"] = ""

    with st.sidebar:
        menu_choice = option_menu(
            menu_title="RFPStoryCraft",
            options=[
                "Home",
                "RFP Bot",
                "User Stories",
                "Summary",
                "Estimations",
                "RoadMap",
            ],
            icons=["house", "list-task", "book", "book", "list-task"],
        )

        if st.session_state["is_data_processed"] == True:
            st.button("Clear RFP Data", on_click=clear_rfp_data)

        # if localStorage.getItem("email"):
        #     st.button("Log out", on_click=lambda: log_out_user(localStorage))

    if menu_choice == "Home":
        with st.form("my_form"):
            project_name = st.text_input(
                "Project Name",
                key="Project Name",
                type="default",
                placeholder="Project Name",
            )
            files = st.file_uploader(
                "Document", type=["pdf", "txt", "docx"], accept_multiple_files=True
            )

            submitted = st.form_submit_button("Process Data")

            if submitted:
                if project_name and files:
                    function.process_rfp_data(project_name, files)
                else:
                    st.warning(
                        "project_name and file are required to create create stories",
                        icon="⚠️",
                    )

    if menu_choice == "RFP Bot":
        if st.session_state["is_data_processed"] == True:
            st.title(" RFP Chatbot ")
            st.subheader(" Powered by Coffeebeans")
            st.text_input(
                "You: ",
                st.session_state["input"],
                key="input",
                placeholder="Your AI assistant here! Ask me Queries related to RFP",
                on_change=function.genrate_bot_result(),
                label_visibility="hidden",
            )
            with st.container():
                for i in range(len(st.session_state["generated"]) - 1, -1, -1):
                    st.success(st.session_state["generated"][i], icon="🤖")
                    st.info(st.session_state["past"][i], icon="🧐")
        else:
            st.warning("Plesase Process RFP Details to access this feature", icon="⚠️")

    if menu_choice == "User Stories":
        if st.session_state["is_data_processed"] == True:
            st.title("User Stories")
            st.button(
                "Genrate User Stories",
                type="primary",
                on_click=function.genrate_user_stories,
            )
            if st.session_state["is_user_stories_created"] == True:
                st.button(
                    "Export Stories",
                    on_click=lambda: export(st.session_state["user_stories_data"]),
                )
                with st.container():
                    df = pd.DataFrame(st.session_state["user_stories_data"])
                    st.table(df)
        else:
            st.warning("Plesase Process RFP Details to access this feature", icon="⚠️")

    if menu_choice == "Summary":
        if st.session_state["is_data_processed"] == True:
            st.title("Summary")
            with st.container():
                st.markdown(st.session_state["rfp_summary"])
        else:
            st.warning("Plesase Process RFP Details to access this feature", icon="⚠️")

    if menu_choice == "Estimations":
        if st.session_state["is_data_processed"] == True:
            if st.session_state["is_user_stories_created"] == True:
                st.title("Estimations")
                senior_developers = st.text_input(
                    label="Number of Senior Developers",
                    placeholder="Enter here....",
                )
                junior_developers = st.text_input(
                    label="Number of Junior Developers",
                    placeholder="Enter here...",
                )
                tech_leads = st.text_input(
                    label="Number of Tech Leads",
                    placeholder="Enter here....",
                )

                if (
                    senior_developers
                    and junior_developers
                    and tech_leads
                    and st.session_state["is_user_stories_created"] == True
                ):
                    st.button(
                        "Generate Estimations",
                        on_click=lambda: function.generate_estimations(
                            tech_leads, senior_developers, junior_developers
                        ),
                    )

                    if st.session_state["is_estimation_data_created"] == True:
                        st.button(
                            "Export Stories",
                            on_click=lambda: export(
                                st.session_state["estimation_data"]
                            ),
                        )

                        with st.container():
                            df = pd.DataFrame(st.session_state["estimation_data"])
                            st.table(df)
            else:
                st.warning(
                    "Plesase Process User Stories to access this feature", icon="⚠️"
                )
        else:
            st.warning("Plesase Process RFP Details to access this feature", icon="⚠️")

    if menu_choice == "RoadMap":
        if st.session_state["is_data_processed"] == True:
            if st.session_state["is_estimation_data_created"] == True:
                st.title("RoadMap")
                st.button(
                    "Generate RoadMap", on_click=lambda: function.generate_roadmap()
                )

                if st.session_state["is_roadmap_data_created"] == True:
                    st.button(
                        "Export RoadMap",
                        on_click=lambda: export(st.session_state["roadmap_data"]),
                    )
                    if st.button("Generate Roadmap and Download"):
                        st.info("Generating roadmap... Please wait.")
                        # Generate the roadmap image
                        generate_roadmap_image()

                    with st.container():
                        df = pd.DataFrame(st.session_state["roadmap_data"])
                        st.table(df)

            else:
                st.warning(
                    "Please Process the Estimations Data to access this feature",
                    icon="⚠️",
                )
        else:
            st.warning("Plesase Process RFP Details to access this feature", icon="⚠️")

    # if menu_choice == "Proposal":
    #     if st.session_state["is_data_processed"] == True:
    #         if st.session_state["is_user_stories_created"] == True:
    #             st.title("Proposal")
    #             num_slides = st.number_input(
    #                 "Enter the number of slides", min_value=1, max_value=20, value=None
    #             )
    #             if num_slides:
    #                 st.button(
    #                     "Generate Presentation", on_click=lambda: prop(num_slides)
    #                 )

    #                 if st.session_state["is_presentation_created"] == True:
    #                     st.success("Presentation Created!", icon="✅")
    #                     with open("Generated_Presentation.pptx", "rb") as pptx_file:
    #                         pptx_bytes = pptx_file.read()
    #                         st.download_button(
    #                             label="Download Presentation",
    #                             data=pptx_bytes,
    #                             file_name="Generated_Presentation_from_code.pptx",
    #                             mime="application/vnd.openxmlformats-officedocument.presentationml.presentation",
    #                         )

    #         else:
    #             st.warning(
    #                 "Please Process the User Stories Data to access this feature",
    #                 icon="⚠️",
    #             )
    #     else:
    #         st.warning("Plesase Process RFP Details to access this feature", icon="⚠️")


if __name__ == "__main__":
        main()