Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,6 +5,13 @@ import os
|
|
| 5 |
from io import BytesIO
|
| 6 |
import re
|
| 7 |
import openai
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
import gradio_client.utils
|
| 10 |
|
|
@@ -19,6 +26,102 @@ def _fixed_json_schema_to_python_type(schema, defs=None):
|
|
| 19 |
gradio_client.utils._json_schema_to_python_type = _fixed_json_schema_to_python_type
|
| 20 |
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
def process_woocommerce_data_in_memory(netcom_file):
|
| 23 |
"""
|
| 24 |
Reads the uploaded NetCom CSV file in-memory, processes it to the WooCommerce format,
|
|
@@ -45,35 +148,6 @@ def process_woocommerce_data_in_memory(netcom_file):
|
|
| 45 |
# 1. Read the uploaded CSV into a DataFrame
|
| 46 |
netcom_df = pd.read_csv(netcom_file.name, encoding='latin1')
|
| 47 |
netcom_df.columns = netcom_df.columns.str.strip() # standardize column names
|
| 48 |
-
|
| 49 |
-
# Initialize OpenAI client
|
| 50 |
-
client = openai.OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
|
| 51 |
-
|
| 52 |
-
# Process descriptions in batches of 500
|
| 53 |
-
def process_text_with_ai(texts, instruction):
|
| 54 |
-
"""Process text with GPT-4o-mini"""
|
| 55 |
-
if not texts:
|
| 56 |
-
return []
|
| 57 |
-
|
| 58 |
-
results = []
|
| 59 |
-
batch_size = 500
|
| 60 |
-
|
| 61 |
-
for i in range(0, len(texts), batch_size):
|
| 62 |
-
batch = texts[i:i+batch_size]
|
| 63 |
-
batch_prompts = [f"{instruction}\n\nText: {text}" for text in batch]
|
| 64 |
-
|
| 65 |
-
batch_results = []
|
| 66 |
-
for prompt in batch_prompts:
|
| 67 |
-
response = client.chat.completions.create(
|
| 68 |
-
model="gpt-4o-mini",
|
| 69 |
-
messages=[{"role": "user", "content": prompt}],
|
| 70 |
-
temperature=0
|
| 71 |
-
)
|
| 72 |
-
batch_results.append(response.choices[0].message.content)
|
| 73 |
-
|
| 74 |
-
results.extend(batch_results)
|
| 75 |
-
|
| 76 |
-
return results
|
| 77 |
|
| 78 |
# Prepare descriptions for AI processing
|
| 79 |
descriptions = netcom_df['Decription'].fillna("").tolist()
|
|
@@ -81,43 +155,54 @@ def process_woocommerce_data_in_memory(netcom_file):
|
|
| 81 |
prerequisites = netcom_df['RequiredPrerequisite'].fillna("").tolist()
|
| 82 |
agendas = netcom_df['Outline'].fillna("").tolist()
|
| 83 |
|
| 84 |
-
# Process with AI
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
"Create a concise 250-character summary of this course description:"
|
| 88 |
-
)
|
| 89 |
-
|
| 90 |
-
condensed_descriptions = process_text_with_ai(
|
| 91 |
-
descriptions,
|
| 92 |
-
"Condense this description to maximum 750 characters in paragraph format, with clean formatting:"
|
| 93 |
-
)
|
| 94 |
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
|
| 100 |
-
|
|
|
|
| 101 |
for prereq in prerequisites:
|
| 102 |
if not prereq or pd.isna(prereq) or prereq.strip() == "":
|
| 103 |
-
|
| 104 |
else:
|
| 105 |
-
|
|
|
|
| 106 |
[prereq],
|
| 107 |
"Format these prerequisites into a bullet list format with clean formatting. Start each bullet with '• ':"
|
| 108 |
-
)
|
| 109 |
-
|
| 110 |
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
|
|
|
| 115 |
|
| 116 |
# Add processed text to dataframe
|
| 117 |
netcom_df['Short_Description'] = short_descriptions
|
| 118 |
netcom_df['Condensed_Description'] = condensed_descriptions
|
| 119 |
netcom_df['Formatted_Objectives'] = formatted_objectives
|
| 120 |
-
netcom_df['Formatted_Prerequisites'] =
|
| 121 |
netcom_df['Formatted_Agenda'] = formatted_agendas
|
| 122 |
|
| 123 |
# 2. Create aggregated dates and times for each Course ID
|
|
|
|
| 5 |
from io import BytesIO
|
| 6 |
import re
|
| 7 |
import openai
|
| 8 |
+
import hashlib
|
| 9 |
+
import json
|
| 10 |
+
import asyncio
|
| 11 |
+
import aiohttp
|
| 12 |
+
from pathlib import Path
|
| 13 |
+
from concurrent.futures import ThreadPoolExecutor
|
| 14 |
+
from functools import lru_cache
|
| 15 |
|
| 16 |
import gradio_client.utils
|
| 17 |
|
|
|
|
| 26 |
gradio_client.utils._json_schema_to_python_type = _fixed_json_schema_to_python_type
|
| 27 |
|
| 28 |
|
| 29 |
+
# Create cache directory if it doesn't exist
|
| 30 |
+
CACHE_DIR = Path("ai_response_cache")
|
| 31 |
+
CACHE_DIR.mkdir(exist_ok=True)
|
| 32 |
+
|
| 33 |
+
def get_cache_path(prompt):
|
| 34 |
+
"""Generate a unique cache file path based on the prompt content"""
|
| 35 |
+
prompt_hash = hashlib.md5(prompt.encode('utf-8')).hexdigest()
|
| 36 |
+
return CACHE_DIR / f"{prompt_hash}.json"
|
| 37 |
+
|
| 38 |
+
def get_cached_response(prompt):
|
| 39 |
+
"""Try to get a cached response for the given prompt"""
|
| 40 |
+
cache_path = get_cache_path(prompt)
|
| 41 |
+
if cache_path.exists():
|
| 42 |
+
try:
|
| 43 |
+
with open(cache_path, 'r', encoding='utf-8') as f:
|
| 44 |
+
return json.load(f)['response']
|
| 45 |
+
except Exception as e:
|
| 46 |
+
print(f"Error reading cache: {e}")
|
| 47 |
+
return None
|
| 48 |
+
|
| 49 |
+
def cache_response(prompt, response):
|
| 50 |
+
"""Cache the response for a given prompt"""
|
| 51 |
+
cache_path = get_cache_path(prompt)
|
| 52 |
+
try:
|
| 53 |
+
with open(cache_path, 'w', encoding='utf-8') as f:
|
| 54 |
+
json.dump({'prompt': prompt, 'response': response}, f)
|
| 55 |
+
except Exception as e:
|
| 56 |
+
print(f"Error writing to cache: {e}")
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
async def process_text_batch_async(client, batch_prompts):
|
| 60 |
+
"""Process a batch of prompts asynchronously"""
|
| 61 |
+
results = []
|
| 62 |
+
|
| 63 |
+
# First check cache for each prompt
|
| 64 |
+
for prompt in batch_prompts:
|
| 65 |
+
cached = get_cached_response(prompt)
|
| 66 |
+
if cached:
|
| 67 |
+
results.append((prompt, cached))
|
| 68 |
+
|
| 69 |
+
# Filter out prompts that were found in cache
|
| 70 |
+
uncached_prompts = [p for p in batch_prompts if not any(p == cached_prompt for cached_prompt, _ in results)]
|
| 71 |
+
|
| 72 |
+
if uncached_prompts:
|
| 73 |
+
# Process uncached prompts in parallel
|
| 74 |
+
async def process_single_prompt(prompt):
|
| 75 |
+
try:
|
| 76 |
+
response = await client.chat.completions.create(
|
| 77 |
+
model="gpt-4o-mini",
|
| 78 |
+
messages=[{"role": "user", "content": prompt}],
|
| 79 |
+
temperature=0
|
| 80 |
+
)
|
| 81 |
+
result = response.choices[0].message.content
|
| 82 |
+
# Cache the result
|
| 83 |
+
cache_response(prompt, result)
|
| 84 |
+
return prompt, result
|
| 85 |
+
except Exception as e:
|
| 86 |
+
print(f"Error processing prompt: {e}")
|
| 87 |
+
return prompt, f"Error: {str(e)}"
|
| 88 |
+
|
| 89 |
+
# Create tasks for all uncached prompts
|
| 90 |
+
tasks = [process_single_prompt(prompt) for prompt in uncached_prompts]
|
| 91 |
+
|
| 92 |
+
# Run all tasks concurrently and wait for them to complete
|
| 93 |
+
uncached_results = await asyncio.gather(*tasks)
|
| 94 |
+
|
| 95 |
+
# Combine cached and newly processed results
|
| 96 |
+
results.extend(uncached_results)
|
| 97 |
+
|
| 98 |
+
# Sort results to match original order of batch_prompts
|
| 99 |
+
prompt_to_result = {prompt: result for prompt, result in results}
|
| 100 |
+
return [prompt_to_result[prompt] for prompt in batch_prompts]
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
async def process_text_with_ai_async(texts, instruction):
|
| 104 |
+
"""Process text with GPT-4o-mini asynchronously in batches"""
|
| 105 |
+
if not texts:
|
| 106 |
+
return []
|
| 107 |
+
|
| 108 |
+
results = []
|
| 109 |
+
batch_size = 500
|
| 110 |
+
|
| 111 |
+
# Create OpenAI async client
|
| 112 |
+
client = openai.AsyncOpenAI(api_key=os.getenv("OPENAI_API_KEY"))
|
| 113 |
+
|
| 114 |
+
# Process in batches
|
| 115 |
+
for i in range(0, len(texts), batch_size):
|
| 116 |
+
batch = texts[i:i+batch_size]
|
| 117 |
+
batch_prompts = [f"{instruction}\n\nText: {text}" for text in batch]
|
| 118 |
+
|
| 119 |
+
batch_results = await process_text_batch_async(client, batch_prompts)
|
| 120 |
+
results.extend(batch_results)
|
| 121 |
+
|
| 122 |
+
return results
|
| 123 |
+
|
| 124 |
+
|
| 125 |
def process_woocommerce_data_in_memory(netcom_file):
|
| 126 |
"""
|
| 127 |
Reads the uploaded NetCom CSV file in-memory, processes it to the WooCommerce format,
|
|
|
|
| 148 |
# 1. Read the uploaded CSV into a DataFrame
|
| 149 |
netcom_df = pd.read_csv(netcom_file.name, encoding='latin1')
|
| 150 |
netcom_df.columns = netcom_df.columns.str.strip() # standardize column names
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
|
| 152 |
# Prepare descriptions for AI processing
|
| 153 |
descriptions = netcom_df['Decription'].fillna("").tolist()
|
|
|
|
| 155 |
prerequisites = netcom_df['RequiredPrerequisite'].fillna("").tolist()
|
| 156 |
agendas = netcom_df['Outline'].fillna("").tolist()
|
| 157 |
|
| 158 |
+
# Process with AI asynchronously
|
| 159 |
+
loop = asyncio.new_event_loop()
|
| 160 |
+
asyncio.set_event_loop(loop)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
|
| 162 |
+
# Run all processing tasks concurrently
|
| 163 |
+
tasks = [
|
| 164 |
+
process_text_with_ai_async(
|
| 165 |
+
descriptions,
|
| 166 |
+
"Create a concise 250-character summary of this course description:"
|
| 167 |
+
),
|
| 168 |
+
process_text_with_ai_async(
|
| 169 |
+
descriptions,
|
| 170 |
+
"Condense this description to maximum 750 characters in paragraph format, with clean formatting:"
|
| 171 |
+
),
|
| 172 |
+
process_text_with_ai_async(
|
| 173 |
+
objectives,
|
| 174 |
+
"Format these objectives into a bullet list format with clean formatting. Start each bullet with '• ':"
|
| 175 |
+
),
|
| 176 |
+
process_text_with_ai_async(
|
| 177 |
+
agendas,
|
| 178 |
+
"Format this agenda into a bullet list format with clean formatting. Start each bullet with '• ':"
|
| 179 |
+
)
|
| 180 |
+
]
|
| 181 |
|
| 182 |
+
# Process prerequisites separately to handle default case
|
| 183 |
+
formatted_prerequisites_task = []
|
| 184 |
for prereq in prerequisites:
|
| 185 |
if not prereq or pd.isna(prereq) or prereq.strip() == "":
|
| 186 |
+
formatted_prerequisites_task.append(default_prerequisite)
|
| 187 |
else:
|
| 188 |
+
# For non-empty prerequisites, we'll process them with AI
|
| 189 |
+
prereq_result = loop.run_until_complete(process_text_with_ai_async(
|
| 190 |
[prereq],
|
| 191 |
"Format these prerequisites into a bullet list format with clean formatting. Start each bullet with '• ':"
|
| 192 |
+
))
|
| 193 |
+
formatted_prerequisites_task.append(prereq_result[0])
|
| 194 |
|
| 195 |
+
# Run all tasks and get results
|
| 196 |
+
results = loop.run_until_complete(asyncio.gather(*tasks))
|
| 197 |
+
loop.close()
|
| 198 |
+
|
| 199 |
+
short_descriptions, condensed_descriptions, formatted_objectives, formatted_agendas = results
|
| 200 |
|
| 201 |
# Add processed text to dataframe
|
| 202 |
netcom_df['Short_Description'] = short_descriptions
|
| 203 |
netcom_df['Condensed_Description'] = condensed_descriptions
|
| 204 |
netcom_df['Formatted_Objectives'] = formatted_objectives
|
| 205 |
+
netcom_df['Formatted_Prerequisites'] = formatted_prerequisites_task
|
| 206 |
netcom_df['Formatted_Agenda'] = formatted_agendas
|
| 207 |
|
| 208 |
# 2. Create aggregated dates and times for each Course ID
|