Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,13 +1,11 @@
|
|
| 1 |
-
"""NetCom → WooCommerce transformer (Try 2 schema —
|
| 2 |
-
|
| 3 |
*Accept CSV **or** Excel schedule files and output the WooCommerce CSV.*
|
| 4 |
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
*
|
| 8 |
-
*
|
| 9 |
-
in-flight `dict[str, asyncio.Future]`.
|
| 10 |
-
* Everything else (cache filenames, interface, outputs) stays the same.
|
| 11 |
"""
|
| 12 |
|
| 13 |
from __future__ import annotations
|
|
@@ -44,7 +42,7 @@ def _cache_path(p: str) -> Path:
|
|
| 44 |
|
| 45 |
def _get_cached(p: str) -> str | None:
|
| 46 |
try:
|
| 47 |
-
return json.loads(_cache_path(p).read_text("utf-8"))[
|
| 48 |
except Exception:
|
| 49 |
return None
|
| 50 |
|
|
@@ -55,24 +53,24 @@ def _set_cache(p: str, r: str) -> None:
|
|
| 55 |
pass
|
| 56 |
|
| 57 |
# -------- Async GPT helpers --------------------------------------------------
|
| 58 |
-
_SEM = asyncio.Semaphore(100)
|
| 59 |
_inflight: dict[str, asyncio.Future] = {} # prompt → Future
|
| 60 |
|
| 61 |
async def _gpt_async(client: openai.AsyncOpenAI, prompt: str) -> str:
|
| 62 |
-
"""Single LLM call with
|
| 63 |
cached = _get_cached(prompt)
|
| 64 |
if cached is not None:
|
| 65 |
return cached
|
| 66 |
|
| 67 |
-
#
|
| 68 |
running = _inflight.get(prompt)
|
| 69 |
if running is not None:
|
| 70 |
-
return await running
|
| 71 |
|
| 72 |
loop = asyncio.get_running_loop()
|
| 73 |
|
| 74 |
async def _call_api() -> str:
|
| 75 |
-
async with _SEM:
|
| 76 |
try:
|
| 77 |
msg = await client.chat.completions.create(
|
| 78 |
model="gpt-4o-mini",
|
|
@@ -80,17 +78,17 @@ async def _gpt_async(client: openai.AsyncOpenAI, prompt: str) -> str:
|
|
| 80 |
temperature=0,
|
| 81 |
)
|
| 82 |
text = msg.choices[0].message.content
|
| 83 |
-
except Exception as exc:
|
| 84 |
text = f"Error: {exc}"
|
| 85 |
_set_cache(prompt, text)
|
| 86 |
return text
|
| 87 |
|
| 88 |
task = loop.create_task(_call_api())
|
| 89 |
-
_inflight[prompt] = task
|
| 90 |
try:
|
| 91 |
return await task
|
| 92 |
finally:
|
| 93 |
-
_inflight.pop(prompt, None)
|
| 94 |
|
| 95 |
async def _batch_async(lst: list[str], instruction: str, client: openai.AsyncOpenAI) -> list[str]:
|
| 96 |
"""Vectorised helper — returns an output list matching *lst* length."""
|
|
@@ -100,10 +98,9 @@ async def _batch_async(lst: list[str], instruction: str, client: openai.AsyncOpe
|
|
| 100 |
if isinstance(txt, str) and txt.strip():
|
| 101 |
idx.append(i)
|
| 102 |
prompts.append(f"{instruction}\n\nText: {txt}")
|
| 103 |
-
if not prompts:
|
| 104 |
return out
|
| 105 |
|
| 106 |
-
# Gather — duplicate prompts handled inside _gpt_async
|
| 107 |
responses = await asyncio.gather(*[_gpt_async(client, p) for p in prompts])
|
| 108 |
for j, val in enumerate(responses):
|
| 109 |
out[idx[j]] = val
|
|
@@ -121,29 +118,46 @@ def _read(path: str) -> pd.DataFrame:
|
|
| 121 |
return pd.read_excel(path)
|
| 122 |
return pd.read_csv(path, encoding="latin1")
|
| 123 |
|
| 124 |
-
async def _enrich_dataframe(
|
|
|
|
|
|
|
| 125 |
"""Run all LLM batches concurrently and return the five enrichment columns."""
|
| 126 |
async with openai.AsyncOpenAI(api_key=os.getenv("OPENAI_API_KEY")) as client:
|
| 127 |
sdesc, ldesc, fobj, fout = await asyncio.gather(
|
| 128 |
-
_batch_async(
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
)
|
| 137 |
-
|
|
|
|
| 138 |
prereq_raw = df.get(pcol, "").fillna("").tolist()
|
| 139 |
fpre: list[str] = []
|
| 140 |
for req in prereq_raw:
|
| 141 |
if not str(req).strip():
|
| 142 |
fpre.append(DEFAULT_PREREQ)
|
| 143 |
else:
|
| 144 |
-
formatted = await _batch_async(
|
| 145 |
-
|
| 146 |
-
|
|
|
|
|
|
|
| 147 |
fpre.append(formatted[0])
|
| 148 |
|
| 149 |
return sdesc, ldesc, fobj, fout, fpre
|
|
@@ -176,10 +190,12 @@ def convert(path: str) -> BytesIO:
|
|
| 176 |
sid = first_col("Course SID", "Course SID")
|
| 177 |
|
| 178 |
if dur not in df.columns:
|
| 179 |
-
df[dur] = "" # ensure Duration
|
| 180 |
|
| 181 |
# ---------- LLM enrichment (async) -------------------------------------
|
| 182 |
-
sdesc, ldesc, fobj, fout, fpre = asyncio.run(
|
|
|
|
|
|
|
| 183 |
|
| 184 |
df["Short_Description"] = sdesc
|
| 185 |
df["Condensed_Description"] = ldesc
|
|
@@ -193,105 +209,148 @@ def convert(path: str) -> BytesIO:
|
|
| 193 |
|
| 194 |
dsorted = df.sort_values(["Course ID", "Course Start Date"])
|
| 195 |
d_agg = (
|
| 196 |
-
dsorted
|
| 197 |
-
.groupby("Course ID")["Date_fmt"]
|
| 198 |
.apply(lambda s: ",".join(s.dropna().unique()))
|
| 199 |
.reset_index(name="Dates")
|
| 200 |
)
|
|
|
|
| 201 |
t_agg = (
|
| 202 |
-
dsorted
|
| 203 |
-
.
|
| 204 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
.reset_index(name="Times")
|
| 206 |
)
|
| 207 |
|
| 208 |
parents = dsorted.drop_duplicates("Course ID").merge(d_agg).merge(t_agg)
|
| 209 |
|
| 210 |
# ---------- Parent / child product rows --------------------------------
|
| 211 |
-
parent = pd.DataFrame(
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 286 |
|
| 287 |
all_rows = pd.concat([parent, child], ignore_index=True)
|
| 288 |
order = [
|
| 289 |
-
"Type",
|
| 290 |
-
"
|
| 291 |
-
"
|
| 292 |
-
"
|
| 293 |
-
"
|
| 294 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 295 |
]
|
| 296 |
|
| 297 |
out = BytesIO()
|
|
@@ -310,7 +369,9 @@ def process_file(upload: gr.File) -> str:
|
|
| 310 |
|
| 311 |
ui = gr.Interface(
|
| 312 |
fn=process_file,
|
| 313 |
-
inputs=gr.File(
|
|
|
|
|
|
|
| 314 |
outputs=gr.File(label="Download WooCommerce CSV"),
|
| 315 |
title="NetCom → WooCommerce CSV Processor (Try 2)",
|
| 316 |
description="Upload NetCom schedule (.csv/.xlsx) to get the Try 2-formatted WooCommerce CSV.",
|
|
|
|
| 1 |
+
"""NetCom → WooCommerce transformer (Try 2 schema — 100-parallel + de-dupe, pandas fix)
|
| 2 |
+
======================================================================================
|
| 3 |
*Accept CSV **or** Excel schedule files and output the WooCommerce CSV.*
|
| 4 |
|
| 5 |
+
New since the last paste
|
| 6 |
+
------------------------
|
| 7 |
+
* Fix for older pandas: move `include_groups=False` from `.groupby()` to `.apply()`.
|
| 8 |
+
* Everything else (cache names, concurrency cap, in-flight de-duplication) is unchanged.
|
|
|
|
|
|
|
| 9 |
"""
|
| 10 |
|
| 11 |
from __future__ import annotations
|
|
|
|
| 42 |
|
| 43 |
def _get_cached(p: str) -> str | None:
|
| 44 |
try:
|
| 45 |
+
return json.loads(_cache_path(p).read_text("utf-8"))["response"]
|
| 46 |
except Exception:
|
| 47 |
return None
|
| 48 |
|
|
|
|
| 53 |
pass
|
| 54 |
|
| 55 |
# -------- Async GPT helpers --------------------------------------------------
|
| 56 |
+
_SEM = asyncio.Semaphore(100) # ≤100 concurrent OpenAI calls
|
| 57 |
_inflight: dict[str, asyncio.Future] = {} # prompt → Future
|
| 58 |
|
| 59 |
async def _gpt_async(client: openai.AsyncOpenAI, prompt: str) -> str:
|
| 60 |
+
"""Single LLM call with disk cache, concurrency cap, and de-duplication."""
|
| 61 |
cached = _get_cached(prompt)
|
| 62 |
if cached is not None:
|
| 63 |
return cached
|
| 64 |
|
| 65 |
+
# De-duplicate identical prompts already in flight
|
| 66 |
running = _inflight.get(prompt)
|
| 67 |
if running is not None:
|
| 68 |
+
return await running
|
| 69 |
|
| 70 |
loop = asyncio.get_running_loop()
|
| 71 |
|
| 72 |
async def _call_api() -> str:
|
| 73 |
+
async with _SEM: # concurrency limiter
|
| 74 |
try:
|
| 75 |
msg = await client.chat.completions.create(
|
| 76 |
model="gpt-4o-mini",
|
|
|
|
| 78 |
temperature=0,
|
| 79 |
)
|
| 80 |
text = msg.choices[0].message.content
|
| 81 |
+
except Exception as exc:
|
| 82 |
text = f"Error: {exc}"
|
| 83 |
_set_cache(prompt, text)
|
| 84 |
return text
|
| 85 |
|
| 86 |
task = loop.create_task(_call_api())
|
| 87 |
+
_inflight[prompt] = task
|
| 88 |
try:
|
| 89 |
return await task
|
| 90 |
finally:
|
| 91 |
+
_inflight.pop(prompt, None)
|
| 92 |
|
| 93 |
async def _batch_async(lst: list[str], instruction: str, client: openai.AsyncOpenAI) -> list[str]:
|
| 94 |
"""Vectorised helper — returns an output list matching *lst* length."""
|
|
|
|
| 98 |
if isinstance(txt, str) and txt.strip():
|
| 99 |
idx.append(i)
|
| 100 |
prompts.append(f"{instruction}\n\nText: {txt}")
|
| 101 |
+
if not prompts:
|
| 102 |
return out
|
| 103 |
|
|
|
|
| 104 |
responses = await asyncio.gather(*[_gpt_async(client, p) for p in prompts])
|
| 105 |
for j, val in enumerate(responses):
|
| 106 |
out[idx[j]] = val
|
|
|
|
| 118 |
return pd.read_excel(path)
|
| 119 |
return pd.read_csv(path, encoding="latin1")
|
| 120 |
|
| 121 |
+
async def _enrich_dataframe(
|
| 122 |
+
df: pd.DataFrame, dcol: str, ocol: str, pcol: str, acol: str
|
| 123 |
+
) -> tuple[list[str], list[str], list[str], list[str], list[str]]:
|
| 124 |
"""Run all LLM batches concurrently and return the five enrichment columns."""
|
| 125 |
async with openai.AsyncOpenAI(api_key=os.getenv("OPENAI_API_KEY")) as client:
|
| 126 |
sdesc, ldesc, fobj, fout = await asyncio.gather(
|
| 127 |
+
_batch_async(
|
| 128 |
+
df.get(dcol, "").fillna("").tolist(),
|
| 129 |
+
"Create a concise 250-character summary of this course description:",
|
| 130 |
+
client,
|
| 131 |
+
),
|
| 132 |
+
_batch_async(
|
| 133 |
+
df.get(dcol, "").fillna("").tolist(),
|
| 134 |
+
"Condense this description to a maximum of 750 characters in paragraph format, with clean formatting:",
|
| 135 |
+
client,
|
| 136 |
+
),
|
| 137 |
+
_batch_async(
|
| 138 |
+
df.get(ocol, "").fillna("").tolist(),
|
| 139 |
+
"Format these objectives into a bullet list with clean formatting. Start each bullet with '• ':",
|
| 140 |
+
client,
|
| 141 |
+
),
|
| 142 |
+
_batch_async(
|
| 143 |
+
df.get(acol, "").fillna("").tolist(),
|
| 144 |
+
"Format this agenda into a bullet list with clean formatting. Start each bullet with '• ':",
|
| 145 |
+
client,
|
| 146 |
+
),
|
| 147 |
)
|
| 148 |
+
|
| 149 |
+
# Prerequisites (some rows empty → default text)
|
| 150 |
prereq_raw = df.get(pcol, "").fillna("").tolist()
|
| 151 |
fpre: list[str] = []
|
| 152 |
for req in prereq_raw:
|
| 153 |
if not str(req).strip():
|
| 154 |
fpre.append(DEFAULT_PREREQ)
|
| 155 |
else:
|
| 156 |
+
formatted = await _batch_async(
|
| 157 |
+
[req],
|
| 158 |
+
"Format these prerequisites into a bullet list with clean formatting. Start each bullet with '• ':",
|
| 159 |
+
client,
|
| 160 |
+
)
|
| 161 |
fpre.append(formatted[0])
|
| 162 |
|
| 163 |
return sdesc, ldesc, fobj, fout, fpre
|
|
|
|
| 190 |
sid = first_col("Course SID", "Course SID")
|
| 191 |
|
| 192 |
if dur not in df.columns:
|
| 193 |
+
df[dur] = "" # ensure Duration column exists
|
| 194 |
|
| 195 |
# ---------- LLM enrichment (async) -------------------------------------
|
| 196 |
+
sdesc, ldesc, fobj, fout, fpre = asyncio.run(
|
| 197 |
+
_enrich_dataframe(df, dcol, ocol, pcol, acol)
|
| 198 |
+
)
|
| 199 |
|
| 200 |
df["Short_Description"] = sdesc
|
| 201 |
df["Condensed_Description"] = ldesc
|
|
|
|
| 209 |
|
| 210 |
dsorted = df.sort_values(["Course ID", "Course Start Date"])
|
| 211 |
d_agg = (
|
| 212 |
+
dsorted.groupby("Course ID")["Date_fmt"]
|
|
|
|
| 213 |
.apply(lambda s: ",".join(s.dropna().unique()))
|
| 214 |
.reset_index(name="Dates")
|
| 215 |
)
|
| 216 |
+
|
| 217 |
t_agg = (
|
| 218 |
+
dsorted.groupby("Course ID", group_keys=False)
|
| 219 |
+
.apply(
|
| 220 |
+
lambda g: ",".join(
|
| 221 |
+
f"{st}-{et} {tz}"
|
| 222 |
+
for st, et, tz in zip(
|
| 223 |
+
g["Course Start Time"], g["Course End Time"], g["Time Zone"]
|
| 224 |
+
)
|
| 225 |
+
),
|
| 226 |
+
include_groups=False, # <- moved here
|
| 227 |
+
)
|
| 228 |
.reset_index(name="Times")
|
| 229 |
)
|
| 230 |
|
| 231 |
parents = dsorted.drop_duplicates("Course ID").merge(d_agg).merge(t_agg)
|
| 232 |
|
| 233 |
# ---------- Parent / child product rows --------------------------------
|
| 234 |
+
parent = pd.DataFrame(
|
| 235 |
+
{
|
| 236 |
+
"Type": "variable",
|
| 237 |
+
"SKU": parents["Course ID"],
|
| 238 |
+
"Name": parents["Course Name"],
|
| 239 |
+
"Published": 1,
|
| 240 |
+
"Visibility in catalog": "visible",
|
| 241 |
+
"Short description": parents["Short_Description"],
|
| 242 |
+
"Description": parents["Condensed_Description"],
|
| 243 |
+
"Tax status": "taxable",
|
| 244 |
+
"In stock?": 1,
|
| 245 |
+
"Stock": 1,
|
| 246 |
+
"Sold individually?": 1,
|
| 247 |
+
"Regular price": parents["SRP Pricing"].replace("[\\$,]", "", regex=True),
|
| 248 |
+
"Categories": "courses",
|
| 249 |
+
"Images": parents["Vendor"].map(logos).fillna(""),
|
| 250 |
+
"Parent": "",
|
| 251 |
+
"Brands": parents["Vendor"],
|
| 252 |
+
"Attribute 1 name": "Date",
|
| 253 |
+
"Attribute 1 value(s)": parents["Dates"],
|
| 254 |
+
"Attribute 1 visible": "visible",
|
| 255 |
+
"Attribute 1 global": 1,
|
| 256 |
+
"Attribute 2 name": "Location",
|
| 257 |
+
"Attribute 2 value(s)": "Virtual",
|
| 258 |
+
"Attribute 2 visible": "visible",
|
| 259 |
+
"Attribute 2 global": 1,
|
| 260 |
+
"Attribute 3 name": "Time",
|
| 261 |
+
"Attribute 3 value(s)": parents["Times"],
|
| 262 |
+
"Attribute 3 visible": "visible",
|
| 263 |
+
"Attribute 3 global": 1,
|
| 264 |
+
"Meta: outline": parents["Formatted_Agenda"],
|
| 265 |
+
"Meta: days": parents[dur],
|
| 266 |
+
"Meta: location": "Virtual",
|
| 267 |
+
"Meta: overview": parents["Target Audience"],
|
| 268 |
+
"Meta: objectives": parents["Formatted_Objectives"],
|
| 269 |
+
"Meta: prerequisites": parents["Formatted_Prerequisites"],
|
| 270 |
+
"Meta: agenda": parents["Formatted_Agenda"],
|
| 271 |
+
}
|
| 272 |
+
)
|
| 273 |
+
|
| 274 |
+
child = pd.DataFrame(
|
| 275 |
+
{
|
| 276 |
+
"Type": "variation, virtual",
|
| 277 |
+
"SKU": dsorted[sid].astype(str).str.strip(),
|
| 278 |
+
"Name": dsorted["Course Name"],
|
| 279 |
+
"Published": 1,
|
| 280 |
+
"Visibility in catalog": "visible",
|
| 281 |
+
"Short description": dsorted["Short_Description"],
|
| 282 |
+
"Description": dsorted["Condensed_Description"],
|
| 283 |
+
"Tax status": "taxable",
|
| 284 |
+
"In stock?": 1,
|
| 285 |
+
"Stock": 1,
|
| 286 |
+
"Sold individually?": 1,
|
| 287 |
+
"Regular price": dsorted["SRP Pricing"].replace("[\\$,]", "", regex=True),
|
| 288 |
+
"Categories": "courses",
|
| 289 |
+
"Images": dsorted["Vendor"].map(logos).fillna(""),
|
| 290 |
+
"Parent": dsorted["Course ID"],
|
| 291 |
+
"Brands": dsorted["Vendor"],
|
| 292 |
+
"Attribute 1 name": "Date",
|
| 293 |
+
"Attribute 1 value(s)": dsorted["Date_fmt"],
|
| 294 |
+
"Attribute 1 visible": "visible",
|
| 295 |
+
"Attribute 1 global": 1,
|
| 296 |
+
"Attribute 2 name": "Location",
|
| 297 |
+
"Attribute 2 value(s)": "Virtual",
|
| 298 |
+
"Attribute 2 visible": "visible",
|
| 299 |
+
"Attribute 2 global": 1,
|
| 300 |
+
"Attribute 3 name": "Time",
|
| 301 |
+
"Attribute 3 value(s)": dsorted.apply(
|
| 302 |
+
lambda r: f"{r['Course Start Time']}-{r['Course End Time']} {r['Time Zone']}",
|
| 303 |
+
axis=1,
|
| 304 |
+
),
|
| 305 |
+
"Attribute 3 visible": "visible",
|
| 306 |
+
"Attribute 3 global": 1,
|
| 307 |
+
"Meta: outline": dsorted["Formatted_Agenda"],
|
| 308 |
+
"Meta: days": dsorted[dur],
|
| 309 |
+
"Meta: location": "Virtual",
|
| 310 |
+
"Meta: overview": dsorted["Target Audience"],
|
| 311 |
+
"Meta: objectives": dsorted["Formatted_Objectives"],
|
| 312 |
+
"Meta: prerequisites": dsorted["Formatted_Prerequisites"],
|
| 313 |
+
"Meta: agenda": dsorted["Formatted_Agenda"],
|
| 314 |
+
}
|
| 315 |
+
)
|
| 316 |
|
| 317 |
all_rows = pd.concat([parent, child], ignore_index=True)
|
| 318 |
order = [
|
| 319 |
+
"Type",
|
| 320 |
+
"SKU",
|
| 321 |
+
"Name",
|
| 322 |
+
"Published",
|
| 323 |
+
"Visibility in catalog",
|
| 324 |
+
"Short description",
|
| 325 |
+
"Description",
|
| 326 |
+
"Tax status",
|
| 327 |
+
"In stock?",
|
| 328 |
+
"Stock",
|
| 329 |
+
"Sold individually?",
|
| 330 |
+
"Regular price",
|
| 331 |
+
"Categories",
|
| 332 |
+
"Images",
|
| 333 |
+
"Parent",
|
| 334 |
+
"Brands",
|
| 335 |
+
"Attribute 1 name",
|
| 336 |
+
"Attribute 1 value(s)",
|
| 337 |
+
"Attribute 1 visible",
|
| 338 |
+
"Attribute 1 global",
|
| 339 |
+
"Attribute 2 name",
|
| 340 |
+
"Attribute 2 value(s)",
|
| 341 |
+
"Attribute 2 visible",
|
| 342 |
+
"Attribute 2 global",
|
| 343 |
+
"Attribute 3 name",
|
| 344 |
+
"Attribute 3 value(s)",
|
| 345 |
+
"Attribute 3 visible",
|
| 346 |
+
"Attribute 3 global",
|
| 347 |
+
"Meta: outline",
|
| 348 |
+
"Meta: days",
|
| 349 |
+
"Meta: location",
|
| 350 |
+
"Meta: overview",
|
| 351 |
+
"Meta: objectives",
|
| 352 |
+
"Meta: prerequisites",
|
| 353 |
+
"Meta: agenda",
|
| 354 |
]
|
| 355 |
|
| 356 |
out = BytesIO()
|
|
|
|
| 369 |
|
| 370 |
ui = gr.Interface(
|
| 371 |
fn=process_file,
|
| 372 |
+
inputs=gr.File(
|
| 373 |
+
label="Upload NetCom CSV / Excel", file_types=[".csv", ".xlsx", ".xls"]
|
| 374 |
+
),
|
| 375 |
outputs=gr.File(label="Download WooCommerce CSV"),
|
| 376 |
title="NetCom → WooCommerce CSV Processor (Try 2)",
|
| 377 |
description="Upload NetCom schedule (.csv/.xlsx) to get the Try 2-formatted WooCommerce CSV.",
|