import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer # Load the AuthorMist model and tokenizer model_name = "authormist/authormist-originality" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # Function to humanize input text def humanize_text(text): prompt = f"Please paraphrase the following text to make it human-like:\n\n{text}\n\nParaphrased text:" inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(inputs.input_ids, max_new_tokens=512, temperature=0.7, top_p=0.9) response = tokenizer.decode(outputs[0], skip_special_tokens=True) # Extract only the paraphrased part if "Paraphrased text:" in response: return response.split("Paraphrased text:")[1].strip() return response.strip() # Launch Gradio UI gr.Interface( fn=humanize_text, inputs=gr.Textbox(lines=10, placeholder="Paste AI-written text here..."), outputs="text", title="AuthorMist AI Humanizer", description="Turns AI-generated text into human-like writing to reduce detection by tools like GPTZero." ).launch()