Spaces:
Running
Running
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
model_name = "authormist/authormist-originality" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
def humanize_text(text): | |
prompt = f"Please paraphrase the following text to make it human-like:\n\n{text}\n\nParaphrased text:" | |
inputs = tokenizer(prompt, return_tensors="pt") | |
outputs = model.generate(inputs.input_ids, max_new_tokens=512, temperature=0.7, top_p=0.9) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
if "Paraphrased text:" in response: | |
return response.split("Paraphrased text:")[1].strip() | |
return response.strip() | |
gr.Interface( | |
fn=humanize_text, | |
inputs=gr.Textbox(lines=10, placeholder="Paste AI-written text here..."), | |
outputs="text", | |
title="AuthorMist AI Humanizer", | |
description="Turns AI-generated text into human-like writing to reduce detection by tools like GPTZero." | |
).launch() | |