Spaces:
Running
Running
Asankhaya Sharma
commited on
Commit
·
033cc04
1
Parent(s):
189073a
update co pilot
Browse files*.tar.* filter=lfs diff=lfs merge=lfs -text
- main.py +29 -100
- question.py +40 -56
main.py
CHANGED
|
@@ -3,15 +3,10 @@ import os
|
|
| 3 |
import tempfile
|
| 4 |
|
| 5 |
import streamlit as st
|
| 6 |
-
from files import file_uploader, url_uploader
|
| 7 |
from question import chat_with_doc
|
| 8 |
-
from brain import brain
|
| 9 |
from langchain.embeddings import HuggingFaceInferenceAPIEmbeddings
|
| 10 |
from langchain.vectorstores import SupabaseVectorStore
|
| 11 |
from supabase import Client, create_client
|
| 12 |
-
from explorer import view_document
|
| 13 |
-
from stats import get_usage_today
|
| 14 |
-
from st_login_form import login_form
|
| 15 |
|
| 16 |
supabase_url = st.secrets.SUPABASE_URL
|
| 17 |
supabase_key = st.secrets.SUPABASE_KEY
|
|
@@ -20,6 +15,7 @@ anthropic_api_key = st.secrets.anthropic_api_key
|
|
| 20 |
hf_api_key = st.secrets.hf_api_key
|
| 21 |
supabase: Client = create_client(supabase_url, supabase_key)
|
| 22 |
self_hosted = st.secrets.self_hosted
|
|
|
|
| 23 |
|
| 24 |
# embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
|
| 25 |
|
|
@@ -42,103 +38,36 @@ if anthropic_api_key:
|
|
| 42 |
|
| 43 |
# Set the theme
|
| 44 |
st.set_page_config(
|
| 45 |
-
page_title="
|
| 46 |
-
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
)
|
| 49 |
|
| 50 |
-
|
| 51 |
-
st.
|
| 52 |
-
st.markdown("Store your knowledge in a vector store and chat with it.")
|
| 53 |
-
if self_hosted == "false":
|
| 54 |
-
st.markdown('**📢 Note: In the public demo, access to functionality is restricted. You can only use the GPT-3.5-turbo model and upload files up to 1Mb. To use more models and upload larger files, consider self-hosting meraKB.**')
|
| 55 |
|
| 56 |
st.markdown("---\n\n")
|
| 57 |
|
| 58 |
-
|
| 59 |
-
if
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
st.session_state["username"] = 'guest'
|
| 76 |
-
st.success("Welcome guest")
|
| 77 |
-
|
| 78 |
-
# Initialize session state variables
|
| 79 |
-
if 'model' not in st.session_state:
|
| 80 |
-
st.session_state['model'] = "meta-llama/Llama-2-70b-chat-hf"
|
| 81 |
-
if 'temperature' not in st.session_state:
|
| 82 |
-
st.session_state['temperature'] = 0.1
|
| 83 |
-
if 'chunk_size' not in st.session_state:
|
| 84 |
-
st.session_state['chunk_size'] = 500
|
| 85 |
-
if 'chunk_overlap' not in st.session_state:
|
| 86 |
-
st.session_state['chunk_overlap'] = 0
|
| 87 |
-
if 'max_tokens' not in st.session_state:
|
| 88 |
-
st.session_state['max_tokens'] = 500
|
| 89 |
-
|
| 90 |
-
# Create a radio button for user to choose between adding knowledge or asking a question
|
| 91 |
-
user_choice = st.radio(
|
| 92 |
-
"Choose an action", ('Add Knowledge', 'Chat with your Brain', 'Forget', "Explore"))
|
| 93 |
-
|
| 94 |
-
st.markdown("---\n\n")
|
| 95 |
-
|
| 96 |
-
if user_choice == 'Add Knowledge':
|
| 97 |
-
# Display chunk size and overlap selection only when adding knowledge
|
| 98 |
-
st.sidebar.title("Configuration")
|
| 99 |
-
st.sidebar.markdown(
|
| 100 |
-
"Choose your chunk size and overlap for adding knowledge.")
|
| 101 |
-
st.session_state['chunk_size'] = st.sidebar.slider(
|
| 102 |
-
"Select Chunk Size", 100, 1000, st.session_state['chunk_size'], 50)
|
| 103 |
-
st.session_state['chunk_overlap'] = st.sidebar.slider(
|
| 104 |
-
"Select Chunk Overlap", 0, 100, st.session_state['chunk_overlap'], 10)
|
| 105 |
-
|
| 106 |
-
# Create two columns for the file uploader and URL uploader
|
| 107 |
-
col1, col2 = st.columns(2)
|
| 108 |
-
|
| 109 |
-
with col1:
|
| 110 |
-
file_uploader(supabase, vector_store)
|
| 111 |
-
with col2:
|
| 112 |
-
url_uploader(supabase, vector_store)
|
| 113 |
-
elif user_choice == 'Chat with your Brain':
|
| 114 |
-
# Display model and temperature selection only when asking questions
|
| 115 |
-
st.sidebar.title("Configuration")
|
| 116 |
-
st.sidebar.markdown(
|
| 117 |
-
"Choose your model and temperature for asking questions.")
|
| 118 |
-
if self_hosted != "false":
|
| 119 |
-
st.session_state['model'] = st.sidebar.selectbox(
|
| 120 |
-
"Select Model", models, index=(models).index(st.session_state['model']))
|
| 121 |
-
else:
|
| 122 |
-
st.sidebar.write("**Model**: gpt-3.5-turbo")
|
| 123 |
-
st.sidebar.write("**Self Host to unlock more models such as claude-v1 and GPT4**")
|
| 124 |
-
st.session_state['model'] = "gpt-3.5-turbo"
|
| 125 |
-
st.session_state['temperature'] = st.sidebar.slider(
|
| 126 |
-
"Select Temperature", 0.1, 1.0, st.session_state['temperature'], 0.1)
|
| 127 |
-
if st.secrets.self_hosted != "false":
|
| 128 |
-
st.session_state['max_tokens'] = st.sidebar.slider(
|
| 129 |
-
"Select Max Tokens", 500, 4000, st.session_state['max_tokens'], 500)
|
| 130 |
-
else:
|
| 131 |
-
st.session_state['max_tokens'] = 500
|
| 132 |
-
|
| 133 |
-
chat_with_doc(st.session_state['model'], vector_store, stats_db=supabase)
|
| 134 |
-
elif user_choice == 'Forget':
|
| 135 |
-
st.sidebar.title("Configuration")
|
| 136 |
-
|
| 137 |
-
brain(supabase)
|
| 138 |
-
elif user_choice == 'Explore':
|
| 139 |
-
st.sidebar.title("Configuration")
|
| 140 |
-
view_document(supabase)
|
| 141 |
-
|
| 142 |
-
st.markdown("---\n\n")
|
| 143 |
-
else:
|
| 144 |
-
st.error("Not authenticated")
|
|
|
|
| 3 |
import tempfile
|
| 4 |
|
| 5 |
import streamlit as st
|
|
|
|
| 6 |
from question import chat_with_doc
|
|
|
|
| 7 |
from langchain.embeddings import HuggingFaceInferenceAPIEmbeddings
|
| 8 |
from langchain.vectorstores import SupabaseVectorStore
|
| 9 |
from supabase import Client, create_client
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
supabase_url = st.secrets.SUPABASE_URL
|
| 12 |
supabase_key = st.secrets.SUPABASE_KEY
|
|
|
|
| 15 |
hf_api_key = st.secrets.hf_api_key
|
| 16 |
supabase: Client = create_client(supabase_url, supabase_key)
|
| 17 |
self_hosted = st.secrets.self_hosted
|
| 18 |
+
username = st.secrets.username
|
| 19 |
|
| 20 |
# embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
|
| 21 |
|
|
|
|
| 38 |
|
| 39 |
# Set the theme
|
| 40 |
st.set_page_config(
|
| 41 |
+
page_title="Securade.ai - Safety Copilot",
|
| 42 |
+
page_icon="https://securade.ai/favicon.ico",
|
| 43 |
+
layout="centered",
|
| 44 |
+
initial_sidebar_state="collapsed",
|
| 45 |
+
menu_items={
|
| 46 |
+
"About": "# Securade.ai Safety Copilot v0.1\n [https://securade.ai](https://securade.ai)",
|
| 47 |
+
"Get Help" : "https://securade.ai",
|
| 48 |
+
"Report a Bug": "mailto:[email protected]"
|
| 49 |
+
}
|
| 50 |
)
|
| 51 |
|
| 52 |
+
st.title("👷♂️ Safety Copilot 🦺")
|
| 53 |
+
st.markdown("Chat with your personal assistant about health and safety information.")
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
st.markdown("---\n\n")
|
| 56 |
|
| 57 |
+
# Initialize session state variables
|
| 58 |
+
if 'model' not in st.session_state:
|
| 59 |
+
st.session_state['model'] = "meta-llama/Llama-2-70b-chat-hf"
|
| 60 |
+
if 'temperature' not in st.session_state:
|
| 61 |
+
st.session_state['temperature'] = 0.1
|
| 62 |
+
if 'chunk_size' not in st.session_state:
|
| 63 |
+
st.session_state['chunk_size'] = 500
|
| 64 |
+
if 'chunk_overlap' not in st.session_state:
|
| 65 |
+
st.session_state['chunk_overlap'] = 0
|
| 66 |
+
if 'max_tokens' not in st.session_state:
|
| 67 |
+
st.session_state['max_tokens'] = 500
|
| 68 |
+
if 'username' not in st.session_state:
|
| 69 |
+
st.session_state['username'] = username
|
| 70 |
+
|
| 71 |
+
chat_with_doc(st.session_state['model'], vector_store, stats_db=supabase)
|
| 72 |
+
|
| 73 |
+
st.markdown("---\n\n")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
question.py
CHANGED
|
@@ -16,30 +16,19 @@ hf_api_key = st.secrets.hf_api_key
|
|
| 16 |
logger = get_logger(__name__)
|
| 17 |
|
| 18 |
|
| 19 |
-
def count_tokens(question, model):
|
| 20 |
-
count = f'Words: {len(question.split())}'
|
| 21 |
-
if model.startswith("claude"):
|
| 22 |
-
count += f' | Tokens: {anthropic.count_tokens(question)}'
|
| 23 |
-
return count
|
| 24 |
-
|
| 25 |
-
|
| 26 |
def chat_with_doc(model, vector_store: SupabaseVectorStore, stats_db):
|
| 27 |
|
| 28 |
if 'chat_history' not in st.session_state:
|
| 29 |
st.session_state['chat_history'] = []
|
| 30 |
|
| 31 |
-
|
| 32 |
-
|
| 33 |
question = st.text_area("## Ask a question")
|
| 34 |
-
columns = st.columns(
|
| 35 |
with columns[0]:
|
| 36 |
button = st.button("Ask")
|
| 37 |
with columns[1]:
|
| 38 |
-
count_button = st.button("Count Tokens", type='secondary')
|
| 39 |
-
with columns[2]:
|
| 40 |
clear_history = st.button("Clear History", type='secondary')
|
| 41 |
-
|
| 42 |
-
|
| 43 |
|
| 44 |
if clear_history:
|
| 45 |
# Clear memory in Langchain
|
|
@@ -49,48 +38,43 @@ def chat_with_doc(model, vector_store: SupabaseVectorStore, stats_db):
|
|
| 49 |
|
| 50 |
if button:
|
| 51 |
qa = None
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
st.session_state['chat_history'].append(("You", question))
|
| 80 |
-
|
| 81 |
-
# Generate model's response and add it to chat history
|
| 82 |
-
model_response = qa({"question": question})
|
| 83 |
-
logger.info('Result: %s', model_response["answer"])
|
| 84 |
|
| 85 |
-
|
| 86 |
-
|
|
|
|
| 87 |
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
for speaker, text in st.session_state['chat_history']:
|
| 91 |
-
st.markdown(f"**{speaker}:** {text}")
|
| 92 |
-
else:
|
| 93 |
-
st.error("You have used all your free credits. Please try again later or self host.")
|
| 94 |
|
| 95 |
-
|
| 96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
logger = get_logger(__name__)
|
| 17 |
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
def chat_with_doc(model, vector_store: SupabaseVectorStore, stats_db):
|
| 20 |
|
| 21 |
if 'chat_history' not in st.session_state:
|
| 22 |
st.session_state['chat_history'] = []
|
| 23 |
|
|
|
|
|
|
|
| 24 |
question = st.text_area("## Ask a question")
|
| 25 |
+
columns = st.columns(2)
|
| 26 |
with columns[0]:
|
| 27 |
button = st.button("Ask")
|
| 28 |
with columns[1]:
|
|
|
|
|
|
|
| 29 |
clear_history = st.button("Clear History", type='secondary')
|
| 30 |
+
|
| 31 |
+
st.markdown("---\n\n")
|
| 32 |
|
| 33 |
if clear_history:
|
| 34 |
# Clear memory in Langchain
|
|
|
|
| 38 |
|
| 39 |
if button:
|
| 40 |
qa = None
|
| 41 |
+
add_usage(stats_db, "chat", "prompt" + question, {"model": model, "temperature": st.session_state['temperature']})
|
| 42 |
+
if model.startswith("gpt"):
|
| 43 |
+
logger.info('Using OpenAI model %s', model)
|
| 44 |
+
qa = ConversationalRetrievalChain.from_llm(
|
| 45 |
+
OpenAI(
|
| 46 |
+
model_name=st.session_state['model'], openai_api_key=openai_api_key, temperature=st.session_state['temperature'], max_tokens=st.session_state['max_tokens']), vector_store.as_retriever(), memory=memory, verbose=True)
|
| 47 |
+
elif anthropic_api_key and model.startswith("claude"):
|
| 48 |
+
logger.info('Using Anthropics model %s', model)
|
| 49 |
+
qa = ConversationalRetrievalChain.from_llm(
|
| 50 |
+
ChatAnthropic(
|
| 51 |
+
model=st.session_state['model'], anthropic_api_key=anthropic_api_key, temperature=st.session_state['temperature'], max_tokens_to_sample=st.session_state['max_tokens']), vector_store.as_retriever(), memory=memory, verbose=True, max_tokens_limit=102400)
|
| 52 |
+
elif hf_api_key:
|
| 53 |
+
logger.info('Using HF model %s', model)
|
| 54 |
+
# print(st.session_state['max_tokens'])
|
| 55 |
+
endpoint_url = ("https://api-inference.huggingface.co/models/"+ model)
|
| 56 |
+
model_kwargs = {"temperature" : st.session_state['temperature'],
|
| 57 |
+
"max_new_tokens" : st.session_state['max_tokens'],
|
| 58 |
+
"return_full_text" : False}
|
| 59 |
+
hf = HuggingFaceEndpoint(
|
| 60 |
+
endpoint_url=endpoint_url,
|
| 61 |
+
task="text-generation",
|
| 62 |
+
huggingfacehub_api_token=hf_api_key,
|
| 63 |
+
model_kwargs=model_kwargs
|
| 64 |
+
)
|
| 65 |
+
qa = ConversationalRetrievalChain.from_llm(hf, retriever=vector_store.as_retriever(search_kwargs={"score_threshold": 0.6, "k": 4,"filter": {"user": st.session_state["username"]}}), memory=memory, verbose=True, return_source_documents=True)
|
| 66 |
+
|
| 67 |
+
st.session_state['chat_history'].append(("You", question))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
+
# Generate model's response and add it to chat history
|
| 70 |
+
model_response = qa({"question": question})
|
| 71 |
+
logger.info('Result: %s', model_response["answer"])
|
| 72 |
|
| 73 |
+
st.session_state['chat_history'].append(("Safety Copilot", model_response["answer"]))
|
| 74 |
+
logger.info('Sources: %s', model_response["source_documents"])
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
+
# Display chat history
|
| 77 |
+
st.empty()
|
| 78 |
+
chat_history = st.session_state['chat_history']
|
| 79 |
+
for speaker, text in chat_history:
|
| 80 |
+
st.markdown(f"**{speaker}:** {text}")
|