Spaces:
Running
Running
| # main.py | |
| import os | |
| import streamlit as st | |
| import anthropic | |
| from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings | |
| from langchain_community.vectorstores import SupabaseVectorStore | |
| from langchain_community.llms import HuggingFaceEndpoint | |
| from langchain_community.vectorstores import SupabaseVectorStore | |
| from langchain.chains import ConversationalRetrievalChain | |
| from langchain.memory import ConversationBufferMemory | |
| from supabase import Client, create_client | |
| from streamlit.logger import get_logger | |
| from stats import get_usage, add_usage | |
| supabase_url = st.secrets.SUPABASE_URL | |
| supabase_key = st.secrets.SUPABASE_KEY | |
| openai_api_key = st.secrets.openai_api_key | |
| anthropic_api_key = st.secrets.anthropic_api_key | |
| hf_api_key = st.secrets.hf_api_key | |
| username = st.secrets.username | |
| supabase: Client = create_client(supabase_url, supabase_key) | |
| logger = get_logger(__name__) | |
| embeddings = HuggingFaceInferenceAPIEmbeddings( | |
| api_key=hf_api_key, | |
| model_name="BAAI/bge-large-en-v1.5" | |
| ) | |
| if 'chat_history' not in st.session_state: | |
| st.session_state['chat_history'] = [] | |
| vector_store = SupabaseVectorStore(supabase, embeddings, query_name='match_documents', table_name="documents") | |
| memory = ConversationBufferMemory(memory_key="chat_history", input_key='question', output_key='answer', return_messages=True) | |
| # model = "mistralai/Mixtral-8x7B-Instruct-v0.1" | |
| model = "meta-llama/Meta-Llama-3-70B-Instruct" | |
| temperature = 0.1 | |
| max_tokens = 500 | |
| stats = str(get_usage(supabase)) | |
| def response_generator(query): | |
| qa = None | |
| add_usage(supabase, "chat", "prompt" + query, {"model": model, "temperature": temperature}) | |
| logger.info('Using HF model %s', model) | |
| # print(st.session_state['max_tokens']) | |
| endpoint_url = ("https://api-inference.huggingface.co/models/"+ model) | |
| model_kwargs = {"temperature" : temperature, | |
| "max_new_tokens" : max_tokens, | |
| # "repetition_penalty" : 1.1, | |
| "return_full_text" : False} | |
| hf = HuggingFaceEndpoint( | |
| endpoint_url=endpoint_url, | |
| task="text-generation", | |
| huggingfacehub_api_token=hf_api_key, | |
| model_kwargs=model_kwargs | |
| ) | |
| qa = ConversationalRetrievalChain.from_llm(hf, retriever=vector_store.as_retriever(search_kwargs={"score_threshold": 0.6, "k": 4,"filter": {"user": username}}), memory=memory, verbose=True, return_source_documents=True) | |
| # Generate model's response | |
| model_response = qa({"question": query}) | |
| logger.info('Result: %s', model_response["answer"]) | |
| sources = model_response["source_documents"] | |
| logger.info('Sources: %s', model_response["source_documents"]) | |
| if len(sources) > 0: | |
| response = model_response["answer"] | |
| else: | |
| response = "I am sorry, I do not have enough information to provide an answer. If there is a public source of data that you would like to add, please email [email protected]." | |
| return response | |
| # Set the theme | |
| st.set_page_config( | |
| page_title="Securade.ai - Safety Copilot", | |
| page_icon="https://securade.ai/favicon.ico", | |
| layout="centered", | |
| initial_sidebar_state="collapsed", | |
| menu_items={ | |
| "About": "# Securade.ai Safety Copilot v0.1\n [https://securade.ai](https://securade.ai)", | |
| "Get Help" : "https://securade.ai", | |
| "Report a Bug": "mailto:[email protected]" | |
| } | |
| ) | |
| st.title("👷♂️ Safety Copilot 🦺") | |
| st.markdown("Chat with your personal safety assistant about any health & safety related queries.") | |
| # st.markdown("Up-to-date with latest OSH regulations for Singapore, Indonesia, Malaysia & other parts of Asia.") | |
| st.markdown("_"+ stats + " queries answered!_") | |
| if 'chat_history' not in st.session_state: | |
| st.session_state['chat_history'] = [] | |
| # Display chat messages from history on app rerun | |
| for message in st.session_state.chat_history: | |
| with st.chat_message(message["role"]): | |
| st.markdown(message["content"]) | |
| # Accept user input | |
| if prompt := st.chat_input("Ask a question"): | |
| # print(prompt) | |
| # Add user message to chat history | |
| st.session_state.chat_history.append({"role": "user", "content": prompt}) | |
| # Display user message in chat message container | |
| with st.chat_message("user"): | |
| st.markdown(prompt) | |
| with st.spinner('Safety briefing in progress...'): | |
| response = response_generator(prompt) | |
| # Display assistant response in chat message container | |
| with st.chat_message("assistant"): | |
| st.markdown(response) | |
| # Add assistant response to chat history | |
| # print(response) | |
| st.session_state.chat_history.append({"role": "assistant", "content": response}) | |
| # query = st.text_area("## Ask a question (" + stats + " queries answered so far)", max_chars=500) | |
| # columns = st.columns(2) | |
| # with columns[0]: | |
| # button = st.button("Ask") | |
| # with columns[1]: | |
| # clear_history = st.button("Clear History", type='secondary') | |
| # st.markdown("---\n\n") | |
| # if clear_history: | |
| # # Clear memory in Langchain | |
| # memory.clear() | |
| # st.session_state['chat_history'] = [] | |
| # st.experimental_rerun() |