Spaces:
Sleeping
Sleeping
imatrix support (#80)
Browse files- Imatrix support (349817ec391068d1ba939b87673b1a93884371b9)
- Imatrix (87a3f98b51bebef9bd5ece61549ca9358c00ff0d)
- Imatrix (70cc07f302c5c201546dac098b007428b8813282)
- Imatrix (a06efcaec53b01caa93c6e5704962763bf6e7506)
Co-authored-by: E <[email protected]>
- .gitattributes +1 -0
- Dockerfile +11 -4
- app.py +121 -25
- groups_merged.txt +0 -0
- start.sh +3 -2
.gitattributes
CHANGED
|
@@ -34,3 +34,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
llama.png filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
llama.png filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
imatrix_calibration.txt filter=lfs diff=lfs merge=lfs -text
|
Dockerfile
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
-
FROM
|
|
|
|
| 2 |
ENV DEBIAN_FRONTEND=noninteractive
|
| 3 |
RUN apt-get update && \
|
| 4 |
apt-get upgrade -y && \
|
|
@@ -21,8 +22,8 @@ RUN apt-get update && \
|
|
| 21 |
libxmlsec1-dev \
|
| 22 |
libffi-dev \
|
| 23 |
liblzma-dev \
|
| 24 |
-
|
| 25 |
-
|
| 26 |
|
| 27 |
RUN useradd -m -u 1000 user
|
| 28 |
USER user
|
|
@@ -43,6 +44,8 @@ COPY --chown=1000 . ${HOME}/app
|
|
| 43 |
RUN git clone https://github.com/ggerganov/llama.cpp
|
| 44 |
RUN pip install -r llama.cpp/requirements.txt
|
| 45 |
|
|
|
|
|
|
|
| 46 |
ENV PYTHONPATH=${HOME}/app \
|
| 47 |
PYTHONUNBUFFERED=1 \
|
| 48 |
HF_HUB_ENABLE_HF_TRANSFER=1 \
|
|
@@ -52,6 +55,10 @@ ENV PYTHONPATH=${HOME}/app \
|
|
| 52 |
GRADIO_THEME=huggingface \
|
| 53 |
TQDM_POSITION=-1 \
|
| 54 |
TQDM_MININTERVAL=1 \
|
| 55 |
-
SYSTEM=spaces
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
ENTRYPOINT /bin/sh start.sh
|
|
|
|
|
|
| 1 |
+
FROM nvidia/cuda:11.8.0-cudnn8-devel-ubuntu22.04
|
| 2 |
+
|
| 3 |
ENV DEBIAN_FRONTEND=noninteractive
|
| 4 |
RUN apt-get update && \
|
| 5 |
apt-get upgrade -y && \
|
|
|
|
| 22 |
libxmlsec1-dev \
|
| 23 |
libffi-dev \
|
| 24 |
liblzma-dev \
|
| 25 |
+
ffmpeg \
|
| 26 |
+
nvidia-driver-515
|
| 27 |
|
| 28 |
RUN useradd -m -u 1000 user
|
| 29 |
USER user
|
|
|
|
| 44 |
RUN git clone https://github.com/ggerganov/llama.cpp
|
| 45 |
RUN pip install -r llama.cpp/requirements.txt
|
| 46 |
|
| 47 |
+
COPY imatrix_calibration.txt ${HOME}/app/llama.cpp/
|
| 48 |
+
|
| 49 |
ENV PYTHONPATH=${HOME}/app \
|
| 50 |
PYTHONUNBUFFERED=1 \
|
| 51 |
HF_HUB_ENABLE_HF_TRANSFER=1 \
|
|
|
|
| 55 |
GRADIO_THEME=huggingface \
|
| 56 |
TQDM_POSITION=-1 \
|
| 57 |
TQDM_MININTERVAL=1 \
|
| 58 |
+
SYSTEM=spaces \
|
| 59 |
+
LD_LIBRARY_PATH=/usr/local/cuda/lib64:${LD_LIBRARY_PATH} \
|
| 60 |
+
PATH=/usr/local/nvidia/bin:${PATH}
|
| 61 |
+
|
| 62 |
|
| 63 |
ENTRYPOINT /bin/sh start.sh
|
| 64 |
+
|
app.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
import os
|
| 2 |
import shutil
|
| 3 |
import subprocess
|
|
|
|
| 4 |
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
|
| 5 |
import gradio as gr
|
| 6 |
|
|
@@ -17,6 +18,35 @@ from textwrap import dedent
|
|
| 17 |
|
| 18 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
def split_upload_model(model_path, repo_id, oauth_token: gr.OAuthToken | None, split_max_tensors=256, split_max_size=None):
|
| 21 |
if oauth_token.token is None:
|
| 22 |
raise ValueError("You have to be logged in.")
|
|
@@ -57,7 +87,7 @@ def split_upload_model(model_path, repo_id, oauth_token: gr.OAuthToken | None, s
|
|
| 57 |
|
| 58 |
print("Sharded model has been uploaded successfully!")
|
| 59 |
|
| 60 |
-
def process_model(model_id, q_method, private_repo, split_model, split_max_tensors, split_max_size, oauth_token: gr.OAuthToken | None):
|
| 61 |
if oauth_token.token is None:
|
| 62 |
raise ValueError("You must be logged in to use GGUF-my-repo")
|
| 63 |
model_name = model_id.split('/')[-1]
|
|
@@ -96,18 +126,37 @@ def process_model(model_id, q_method, private_repo, split_model, split_max_tenso
|
|
| 96 |
print("Model converted to fp16 successfully!")
|
| 97 |
print(f"Converted model path: {fp16}")
|
| 98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
username = whoami(oauth_token.token)["name"]
|
| 100 |
-
quantized_gguf_name = f"{model_name.lower()}-{q_method.lower()}.gguf"
|
| 101 |
quantized_gguf_path = quantized_gguf_name
|
| 102 |
-
|
|
|
|
|
|
|
|
|
|
| 103 |
result = subprocess.run(quantise_ggml, shell=True, capture_output=True)
|
| 104 |
if result.returncode != 0:
|
| 105 |
raise Exception(f"Error quantizing: {result.stderr}")
|
| 106 |
-
print(f"Quantized successfully with {q_method} option!")
|
| 107 |
print(f"Quantized model path: {quantized_gguf_path}")
|
| 108 |
|
| 109 |
# Create empty repo
|
| 110 |
-
new_repo_url = api.create_repo(repo_id=f"{username}/{model_name}-{q_method}-GGUF", exist_ok=True, private=private_repo)
|
| 111 |
new_repo_id = new_repo_url.repo_id
|
| 112 |
print("Repo created successfully!", new_repo_url)
|
| 113 |
|
|
@@ -181,13 +230,26 @@ def process_model(model_id, q_method, private_repo, split_model, split_max_tenso
|
|
| 181 |
)
|
| 182 |
except Exception as e:
|
| 183 |
raise Exception(f"Error uploading quantized model: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
|
| 185 |
api.upload_file(
|
| 186 |
path_or_fileobj=f"README.md",
|
| 187 |
path_in_repo=f"README.md",
|
| 188 |
repo_id=new_repo_id,
|
| 189 |
)
|
| 190 |
-
print(f"Uploaded successfully with {q_method} option!")
|
| 191 |
|
| 192 |
return (
|
| 193 |
f'Find your repo <a href=\'{new_repo_url}\' target="_blank" style="text-decoration:underline">here</a>',
|
|
@@ -201,58 +263,92 @@ def process_model(model_id, q_method, private_repo, split_model, split_max_tenso
|
|
| 201 |
|
| 202 |
|
| 203 |
# Create Gradio interface
|
| 204 |
-
with gr.Blocks() as demo:
|
| 205 |
gr.Markdown("You must be logged in to use GGUF-my-repo.")
|
| 206 |
gr.LoginButton(min_width=250)
|
| 207 |
|
| 208 |
-
|
| 209 |
label="Hub Model ID",
|
| 210 |
placeholder="Search for model id on Huggingface",
|
| 211 |
search_type="model",
|
| 212 |
)
|
| 213 |
|
| 214 |
-
|
| 215 |
["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"],
|
| 216 |
label="Quantization Method",
|
| 217 |
info="GGML quantization type",
|
| 218 |
value="Q4_K_M",
|
| 219 |
-
filterable=False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
)
|
| 221 |
|
| 222 |
-
|
| 223 |
value=False,
|
| 224 |
label="Private Repo",
|
| 225 |
info="Create a private repo under your username."
|
| 226 |
)
|
| 227 |
|
| 228 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 229 |
value=False,
|
| 230 |
label="Split Model",
|
| 231 |
info="Shard the model using gguf-split."
|
| 232 |
)
|
| 233 |
|
| 234 |
-
|
| 235 |
value=256,
|
| 236 |
label="Max Tensors per File",
|
| 237 |
info="Maximum number of tensors per file when splitting model.",
|
| 238 |
visible=False
|
| 239 |
)
|
| 240 |
|
| 241 |
-
|
| 242 |
label="Max File Size",
|
| 243 |
info="Maximum file size when splitting model (--split-max-size). May leave empty to use the default.",
|
| 244 |
visible=False
|
| 245 |
)
|
| 246 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 247 |
iface = gr.Interface(
|
| 248 |
fn=process_model,
|
| 249 |
inputs=[
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
|
|
|
|
|
|
|
|
|
| 256 |
],
|
| 257 |
outputs=[
|
| 258 |
gr.Markdown(label="output"),
|
|
@@ -263,13 +359,13 @@ with gr.Blocks() as demo:
|
|
| 263 |
api_name=False
|
| 264 |
)
|
| 265 |
|
| 266 |
-
def
|
| 267 |
return gr.update(visible=split_model), gr.update(visible=split_model)
|
| 268 |
|
| 269 |
-
|
| 270 |
-
fn=
|
| 271 |
-
inputs=
|
| 272 |
-
outputs=[
|
| 273 |
)
|
| 274 |
|
| 275 |
def restart_space():
|
|
|
|
| 1 |
import os
|
| 2 |
import shutil
|
| 3 |
import subprocess
|
| 4 |
+
import signal
|
| 5 |
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
|
| 6 |
import gradio as gr
|
| 7 |
|
|
|
|
| 18 |
|
| 19 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 20 |
|
| 21 |
+
def generate_importance_matrix(model_path, train_data_path):
|
| 22 |
+
imatrix_command = f"./imatrix -m ../{model_path} -f {train_data_path} -ngl 99 --output-frequency 10"
|
| 23 |
+
|
| 24 |
+
os.chdir("llama.cpp")
|
| 25 |
+
|
| 26 |
+
print(f"Current working directory: {os.getcwd()}")
|
| 27 |
+
print(f"Files in the current directory: {os.listdir('.')}")
|
| 28 |
+
|
| 29 |
+
if not os.path.isfile(f"../{model_path}"):
|
| 30 |
+
raise Exception(f"Model file not found: {model_path}")
|
| 31 |
+
|
| 32 |
+
print("Running imatrix command...")
|
| 33 |
+
process = subprocess.Popen(imatrix_command, shell=True)
|
| 34 |
+
|
| 35 |
+
try:
|
| 36 |
+
process.wait(timeout=60) # added wait
|
| 37 |
+
except subprocess.TimeoutExpired:
|
| 38 |
+
print("Imatrix computation timed out. Sending SIGINT to allow graceful termination...")
|
| 39 |
+
process.send_signal(signal.SIGINT)
|
| 40 |
+
try:
|
| 41 |
+
process.wait(timeout=5) # grace period
|
| 42 |
+
except subprocess.TimeoutExpired:
|
| 43 |
+
print("Imatrix proc still didn't term. Forecfully terming process...")
|
| 44 |
+
process.kill()
|
| 45 |
+
|
| 46 |
+
os.chdir("..")
|
| 47 |
+
|
| 48 |
+
print("Importance matrix generation completed.")
|
| 49 |
+
|
| 50 |
def split_upload_model(model_path, repo_id, oauth_token: gr.OAuthToken | None, split_max_tensors=256, split_max_size=None):
|
| 51 |
if oauth_token.token is None:
|
| 52 |
raise ValueError("You have to be logged in.")
|
|
|
|
| 87 |
|
| 88 |
print("Sharded model has been uploaded successfully!")
|
| 89 |
|
| 90 |
+
def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_repo, train_data_file, split_model, split_max_tensors, split_max_size, oauth_token: gr.OAuthToken | None):
|
| 91 |
if oauth_token.token is None:
|
| 92 |
raise ValueError("You must be logged in to use GGUF-my-repo")
|
| 93 |
model_name = model_id.split('/')[-1]
|
|
|
|
| 126 |
print("Model converted to fp16 successfully!")
|
| 127 |
print(f"Converted model path: {fp16}")
|
| 128 |
|
| 129 |
+
imatrix_path = "llama.cpp/imatrix.dat"
|
| 130 |
+
|
| 131 |
+
if use_imatrix:
|
| 132 |
+
if train_data_file:
|
| 133 |
+
train_data_path = train_data_file.name
|
| 134 |
+
else:
|
| 135 |
+
train_data_path = "groups_merged.txt" #fallback calibration dataset
|
| 136 |
+
|
| 137 |
+
print(f"Training data file path: {train_data_path}")
|
| 138 |
+
|
| 139 |
+
if not os.path.isfile(train_data_path):
|
| 140 |
+
raise Exception(f"Training data file not found: {train_data_path}")
|
| 141 |
+
|
| 142 |
+
generate_importance_matrix(fp16, train_data_path)
|
| 143 |
+
else:
|
| 144 |
+
print("Not using imatrix quantization.")
|
| 145 |
username = whoami(oauth_token.token)["name"]
|
| 146 |
+
quantized_gguf_name = f"{model_name.lower()}-{imatrix_q_method.lower()}-imat.gguf" if use_imatrix else f"{model_name.lower()}-{q_method.lower()}.gguf"
|
| 147 |
quantized_gguf_path = quantized_gguf_name
|
| 148 |
+
if use_imatrix:
|
| 149 |
+
quantise_ggml = f"./llama.cpp/quantize --imatrix {imatrix_path} {fp16} {quantized_gguf_path} {imatrix_q_method}"
|
| 150 |
+
else:
|
| 151 |
+
quantise_ggml = f"./llama.cpp/quantize {fp16} {quantized_gguf_path} {q_method}"
|
| 152 |
result = subprocess.run(quantise_ggml, shell=True, capture_output=True)
|
| 153 |
if result.returncode != 0:
|
| 154 |
raise Exception(f"Error quantizing: {result.stderr}")
|
| 155 |
+
print(f"Quantized successfully with {imatrix_q_method if use_imatrix else q_method} option!")
|
| 156 |
print(f"Quantized model path: {quantized_gguf_path}")
|
| 157 |
|
| 158 |
# Create empty repo
|
| 159 |
+
new_repo_url = api.create_repo(repo_id=f"{username}/{model_name}-{imatrix_q_method if use_imatrix else q_method}-GGUF", exist_ok=True, private=private_repo)
|
| 160 |
new_repo_id = new_repo_url.repo_id
|
| 161 |
print("Repo created successfully!", new_repo_url)
|
| 162 |
|
|
|
|
| 230 |
)
|
| 231 |
except Exception as e:
|
| 232 |
raise Exception(f"Error uploading quantized model: {e}")
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
imatrix_path = "llama.cpp/imatrix.dat"
|
| 236 |
+
if os.path.isfile(imatrix_path):
|
| 237 |
+
try:
|
| 238 |
+
print(f"Uploading imatrix.dat: {imatrix_path}")
|
| 239 |
+
api.upload_file(
|
| 240 |
+
path_or_fileobj=imatrix_path,
|
| 241 |
+
path_in_repo="imatrix.dat",
|
| 242 |
+
repo_id=new_repo_id,
|
| 243 |
+
)
|
| 244 |
+
except Exception as e:
|
| 245 |
+
raise Exception(f"Error uploading imatrix.dat: {e}")
|
| 246 |
|
| 247 |
api.upload_file(
|
| 248 |
path_or_fileobj=f"README.md",
|
| 249 |
path_in_repo=f"README.md",
|
| 250 |
repo_id=new_repo_id,
|
| 251 |
)
|
| 252 |
+
print(f"Uploaded successfully with {imatrix_q_method if use_imatrix else q_method} option!")
|
| 253 |
|
| 254 |
return (
|
| 255 |
f'Find your repo <a href=\'{new_repo_url}\' target="_blank" style="text-decoration:underline">here</a>',
|
|
|
|
| 263 |
|
| 264 |
|
| 265 |
# Create Gradio interface
|
| 266 |
+
with gr.Blocks(css=".gradio-container {max-height: 600px; overflow-y: auto;}") as demo:
|
| 267 |
gr.Markdown("You must be logged in to use GGUF-my-repo.")
|
| 268 |
gr.LoginButton(min_width=250)
|
| 269 |
|
| 270 |
+
model_id = HuggingfaceHubSearch(
|
| 271 |
label="Hub Model ID",
|
| 272 |
placeholder="Search for model id on Huggingface",
|
| 273 |
search_type="model",
|
| 274 |
)
|
| 275 |
|
| 276 |
+
q_method = gr.Dropdown(
|
| 277 |
["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"],
|
| 278 |
label="Quantization Method",
|
| 279 |
info="GGML quantization type",
|
| 280 |
value="Q4_K_M",
|
| 281 |
+
filterable=False,
|
| 282 |
+
visible=True
|
| 283 |
+
)
|
| 284 |
+
|
| 285 |
+
imatrix_q_method = gr.Dropdown(
|
| 286 |
+
["IQ3_M", "IQ3_XXS", "Q4_K_M", "Q4_K_S", "IQ4_NL", "IQ4_XS", "Q5_K_M", "Q5_K_S"],
|
| 287 |
+
label="Imatrix Quantization Method",
|
| 288 |
+
info="GGML imatrix quants type",
|
| 289 |
+
value="IQ4_NL",
|
| 290 |
+
filterable=False,
|
| 291 |
+
visible=False
|
| 292 |
+
)
|
| 293 |
+
|
| 294 |
+
use_imatrix = gr.Checkbox(
|
| 295 |
+
value=False,
|
| 296 |
+
label="Use Imatrix Quantization",
|
| 297 |
+
info="Use importance matrix for quantization."
|
| 298 |
)
|
| 299 |
|
| 300 |
+
private_repo = gr.Checkbox(
|
| 301 |
value=False,
|
| 302 |
label="Private Repo",
|
| 303 |
info="Create a private repo under your username."
|
| 304 |
)
|
| 305 |
|
| 306 |
+
train_data_file = gr.File(
|
| 307 |
+
label="Training Data File",
|
| 308 |
+
file_types=["txt"],
|
| 309 |
+
visible=False
|
| 310 |
+
)
|
| 311 |
+
|
| 312 |
+
split_model = gr.Checkbox(
|
| 313 |
value=False,
|
| 314 |
label="Split Model",
|
| 315 |
info="Shard the model using gguf-split."
|
| 316 |
)
|
| 317 |
|
| 318 |
+
split_max_tensors = gr.Number(
|
| 319 |
value=256,
|
| 320 |
label="Max Tensors per File",
|
| 321 |
info="Maximum number of tensors per file when splitting model.",
|
| 322 |
visible=False
|
| 323 |
)
|
| 324 |
|
| 325 |
+
split_max_size = gr.Textbox(
|
| 326 |
label="Max File Size",
|
| 327 |
info="Maximum file size when splitting model (--split-max-size). May leave empty to use the default.",
|
| 328 |
visible=False
|
| 329 |
)
|
| 330 |
|
| 331 |
+
def update_visibility(use_imatrix):
|
| 332 |
+
return gr.update(visible=not use_imatrix), gr.update(visible=use_imatrix), gr.update(visible=use_imatrix)
|
| 333 |
+
|
| 334 |
+
use_imatrix.change(
|
| 335 |
+
fn=update_visibility,
|
| 336 |
+
inputs=use_imatrix,
|
| 337 |
+
outputs=[q_method, imatrix_q_method, train_data_file]
|
| 338 |
+
)
|
| 339 |
+
|
| 340 |
iface = gr.Interface(
|
| 341 |
fn=process_model,
|
| 342 |
inputs=[
|
| 343 |
+
model_id,
|
| 344 |
+
q_method,
|
| 345 |
+
use_imatrix,
|
| 346 |
+
imatrix_q_method,
|
| 347 |
+
private_repo,
|
| 348 |
+
train_data_file,
|
| 349 |
+
split_model,
|
| 350 |
+
split_max_tensors,
|
| 351 |
+
split_max_size,
|
| 352 |
],
|
| 353 |
outputs=[
|
| 354 |
gr.Markdown(label="output"),
|
|
|
|
| 359 |
api_name=False
|
| 360 |
)
|
| 361 |
|
| 362 |
+
def update_split_visibility(split_model):
|
| 363 |
return gr.update(visible=split_model), gr.update(visible=split_model)
|
| 364 |
|
| 365 |
+
split_model.change(
|
| 366 |
+
fn=update_split_visibility,
|
| 367 |
+
inputs=split_model,
|
| 368 |
+
outputs=[split_max_tensors, split_max_size]
|
| 369 |
)
|
| 370 |
|
| 371 |
def restart_space():
|
groups_merged.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
start.sh
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
cd llama.cpp
|
| 2 |
-
make -j quantize gguf-split
|
|
|
|
| 3 |
cd ..
|
| 4 |
-
python app.py
|
|
|
|
| 1 |
cd llama.cpp
|
| 2 |
+
make -j quantize gguf-split imatrix
|
| 3 |
+
|
| 4 |
cd ..
|
| 5 |
+
python app.py
|