Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,176 +1,89 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import yfinance as yf
|
| 3 |
-
import requests
|
| 4 |
import numpy as np
|
| 5 |
import pandas as pd
|
| 6 |
-
|
| 7 |
-
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
|
| 8 |
-
import time
|
| 9 |
|
| 10 |
-
#
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
-
|
| 14 |
-
def fetch_polymarket_data(search_term="S&P"):
|
| 15 |
try:
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
}
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
# Parse the first relevant market
|
| 41 |
-
for market in markets:
|
| 42 |
-
node = market["node"]
|
| 43 |
-
outcomes = node["outcomes"]
|
| 44 |
-
if len(outcomes) >= 2:
|
| 45 |
-
return {
|
| 46 |
-
"question": node["question"],
|
| 47 |
-
"outcomes": {outcome["name"]: float(outcome["price"]) for outcome in outcomes}
|
| 48 |
-
}
|
| 49 |
-
return None
|
| 50 |
-
except Exception as e:
|
| 51 |
-
return None
|
| 52 |
-
|
| 53 |
-
# Function to fetch Yahoo Finance data with retry
|
| 54 |
-
def fetch_yahoo_data(ticker, retries=3, delay=2):
|
| 55 |
-
for attempt in range(retries):
|
| 56 |
-
try:
|
| 57 |
-
stock = yf.download(ticker, period="1y", auto_adjust=False, progress=False)
|
| 58 |
-
if stock.empty or len(stock) < 2:
|
| 59 |
-
return None, None, None, f"No data returned for ticker '{ticker}'. It may be invalid or lack sufficient history."
|
| 60 |
-
daily_returns = stock["Close"].pct_change().dropna()
|
| 61 |
-
if daily_returns.empty:
|
| 62 |
-
return None, None, None, f"No valid returns calculated for ticker '{ticker}'. Insufficient price data."
|
| 63 |
-
mu = daily_returns.mean() * 252 # Annualized drift
|
| 64 |
-
sigma = daily_returns.std() * np.sqrt(252) # Annualized volatility
|
| 65 |
-
last_price = stock["Close"][-1] # Use most recent unadjusted Close
|
| 66 |
-
return mu, sigma, last_price, None
|
| 67 |
-
except Exception as e:
|
| 68 |
-
error_msg = f"Attempt {attempt + 1}/{retries} failed for ticker '{ticker}': {str(e)}"
|
| 69 |
-
if attempt < retries - 1:
|
| 70 |
-
time.sleep(delay) # Wait before retrying
|
| 71 |
-
else:
|
| 72 |
-
return None, None, None, error_msg
|
| 73 |
-
return None, None, None, f"Failed to fetch data for '{ticker}' after {retries} attempts."
|
| 74 |
-
|
| 75 |
-
# Monte Carlo Simulation with GBM
|
| 76 |
-
def monte_carlo_simulation(S0, mu, sigma, T, N, sims, risk_factor, pm_data):
|
| 77 |
-
dt = 1 / 252 # Daily time step
|
| 78 |
-
steps = int(T * 252)
|
| 79 |
-
sim_paths = np.zeros((sims, steps + 1))
|
| 80 |
-
sim_paths[:, 0] = S0
|
| 81 |
-
|
| 82 |
-
# Adjust drift based on Polymarket probabilities
|
| 83 |
-
if pm_data and "outcomes" in pm_data:
|
| 84 |
-
outcomes = pm_data["outcomes"]
|
| 85 |
-
bullish_prob = outcomes.get("Yes", 0.5) if "Yes" in outcomes else 0.5
|
| 86 |
-
bearish_prob = 1 - bullish_prob
|
| 87 |
-
mu_bull = mu * 1.2 * risk_factor
|
| 88 |
-
mu_bear = mu * -0.5 * risk_factor
|
| 89 |
-
mu_adjusted = bullish_prob * mu_bull + bearish_prob * mu_bear
|
| 90 |
-
else:
|
| 91 |
-
mu_adjusted = mu * risk_factor
|
| 92 |
-
|
| 93 |
-
for t in range(1, steps + 1):
|
| 94 |
-
Z = np.random.standard_normal(sims)
|
| 95 |
-
sim_paths[:, t] = sim_paths[:, t-1] * np.exp(
|
| 96 |
-
(mu_adjusted - 0.5 * sigma**2) * dt + sigma * np.sqrt(dt) * Z
|
| 97 |
)
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
ax.set_xlabel("Final Value ($)")
|
| 123 |
-
ax.set_ylabel("Frequency")
|
| 124 |
-
plt.tight_layout()
|
| 125 |
-
|
| 126 |
-
# Calculate stats
|
| 127 |
-
mean_val = np.mean(final_values)
|
| 128 |
-
min_val = np.min(final_values)
|
| 129 |
-
max_val = np.max(final_values)
|
| 130 |
-
std_val = np.std(final_values)
|
| 131 |
-
|
| 132 |
-
# Prepare summary text
|
| 133 |
-
summary = f"Market Data (Yahoo Finance):\n"
|
| 134 |
-
summary += f"- Drift (μ): {mu:.4f} (based on unadjusted Close)\n"
|
| 135 |
-
summary += f"- Volatility (σ): {sigma:.4f}\n"
|
| 136 |
-
summary += f"- Last Close Price: ${S0:.2f}\n\n"
|
| 137 |
-
if pm_data:
|
| 138 |
-
summary += f"Polymarket Data:\n- Question: {pm_data['question']}\n"
|
| 139 |
-
for outcome, prob in pm_data["outcomes"].items():
|
| 140 |
-
summary += f"- {outcome}: {prob*100:.1f}%\n"
|
| 141 |
-
else:
|
| 142 |
-
summary += "Polymarket Data: No relevant market found or API unavailable.\n"
|
| 143 |
-
summary += f"\nSimulation Results ({num_sims} runs):\n"
|
| 144 |
-
summary += f"- Mean Final Value: ${mean_val:.2f}\n"
|
| 145 |
-
summary += f"- Min Final Value: ${min_val:.2f}\n"
|
| 146 |
-
summary += f"- Max Final Value: ${max_val:.2f}\n"
|
| 147 |
-
summary += f"- Std Dev: ${std_val:.2f}"
|
| 148 |
-
|
| 149 |
-
return fig, summary
|
| 150 |
-
|
| 151 |
-
# Gradio UI
|
| 152 |
-
with gr.Blocks(title="Investment Simulation Platform") as demo:
|
| 153 |
-
gr.Markdown("# Investment Decision Simulation Platform")
|
| 154 |
-
gr.Markdown("Simulate investment outcomes using Yahoo Finance data (unadjusted) and Polymarket probabilities.")
|
| 155 |
-
|
| 156 |
with gr.Row():
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
inputs=[investment, ticker, horizon, num_sims, risk_factor],
|
| 172 |
-
outputs=[plot_output, text_output]
|
| 173 |
)
|
| 174 |
|
| 175 |
-
|
| 176 |
-
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import yfinance as yf
|
|
|
|
| 3 |
import numpy as np
|
| 4 |
import pandas as pd
|
| 5 |
+
from scipy.optimize import minimize
|
|
|
|
|
|
|
| 6 |
|
| 7 |
+
# Define stock tickers (25 from S&P 500)
|
| 8 |
+
TICKERS = [
|
| 9 |
+
'AAPL', 'MSFT', 'NVDA', 'AVGO', 'ADBE',
|
| 10 |
+
'AMZN', 'TSLA', 'HD',
|
| 11 |
+
'PG', 'COST',
|
| 12 |
+
'UNH', 'JNJ', 'LLY',
|
| 13 |
+
'JPM', 'GS', 'V',
|
| 14 |
+
'CAT', 'UNP', 'GE',
|
| 15 |
+
'XOM', 'NEE',
|
| 16 |
+
'D',
|
| 17 |
+
'GOOGL', 'META', 'CMCSA',
|
| 18 |
+
'PLD'
|
| 19 |
+
]
|
| 20 |
|
| 21 |
+
def optimize_portfolio(years, target_return):
|
|
|
|
| 22 |
try:
|
| 23 |
+
data = yf.download(TICKERS, period=f"{years}y", interval="1mo")['Adj Close']
|
| 24 |
+
returns = data.pct_change().dropna()
|
| 25 |
+
mean_returns = returns.mean() * 12
|
| 26 |
+
cov_matrix = returns.cov() * 12
|
| 27 |
+
|
| 28 |
+
num_assets = len(TICKERS)
|
| 29 |
+
init_weights = np.ones(num_assets) / num_assets
|
| 30 |
+
|
| 31 |
+
def portfolio_volatility(weights):
|
| 32 |
+
return np.sqrt(weights @ cov_matrix @ weights)
|
| 33 |
+
|
| 34 |
+
constraints = [
|
| 35 |
+
{"type": "eq", "fun": lambda w: np.sum(w) - 1},
|
| 36 |
+
{"type": "eq", "fun": lambda w: w @ mean_returns - target_return}
|
| 37 |
+
]
|
| 38 |
+
|
| 39 |
+
bounds = tuple((0, 1) for _ in range(num_assets))
|
| 40 |
+
|
| 41 |
+
result = minimize(
|
| 42 |
+
portfolio_volatility,
|
| 43 |
+
init_weights,
|
| 44 |
+
method="SLSQP",
|
| 45 |
+
bounds=bounds,
|
| 46 |
+
constraints=constraints
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
)
|
| 48 |
+
|
| 49 |
+
if not result.success:
|
| 50 |
+
return "Optimization failed. Try adjusting inputs.", None, None, None
|
| 51 |
+
|
| 52 |
+
weights = result.x
|
| 53 |
+
port_return = weights @ mean_returns
|
| 54 |
+
port_vol = np.sqrt(weights @ cov_matrix @ weights)
|
| 55 |
+
risk_free_rate = 0.045
|
| 56 |
+
sharpe_ratio = (port_return - risk_free_rate) / port_vol
|
| 57 |
+
|
| 58 |
+
df = pd.DataFrame({
|
| 59 |
+
"Ticker": TICKERS,
|
| 60 |
+
"Weight (%)": np.round(weights * 100, 2)
|
| 61 |
+
}).sort_values("Weight (%)", ascending=False).reset_index(drop=True)
|
| 62 |
+
|
| 63 |
+
return df, f"{port_return*100:.2f}%", f"{port_vol*100:.2f}%", f"{sharpe_ratio:.2f}"
|
| 64 |
+
|
| 65 |
+
except Exception as e:
|
| 66 |
+
return f"Error: {str(e)}", None, None, None
|
| 67 |
+
|
| 68 |
+
with gr.Blocks() as demo:
|
| 69 |
+
gr.Markdown("# 📈 Modern Portfolio Optimizer (MPT)")
|
| 70 |
+
gr.Markdown("Select number of years of historical data and your target annual return. This app computes the **minimum risk portfolio** of 25 S&P 500 stocks.")
|
| 71 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
with gr.Row():
|
| 73 |
+
years_slider = gr.Slider(1, 10, value=5, step=1, label="Years of Historical Data")
|
| 74 |
+
return_slider = gr.Slider(1.0, 15.0, value=5.0, step=0.1, label="Target Annual Return (%)")
|
| 75 |
+
|
| 76 |
+
run_button = gr.Button("Optimize Portfolio")
|
| 77 |
+
|
| 78 |
+
output_table = gr.Dataframe(headers=["Ticker", "Weight (%)"], label="Optimal Allocation")
|
| 79 |
+
ret_text = gr.Text(label="Expected Return")
|
| 80 |
+
vol_text = gr.Text(label="Expected Volatility")
|
| 81 |
+
sharpe_text = gr.Text(label="Sharpe Ratio")
|
| 82 |
+
|
| 83 |
+
run_button.click(
|
| 84 |
+
fn=lambda years, target: optimize_portfolio(years, target / 100),
|
| 85 |
+
inputs=[years_slider, return_slider],
|
| 86 |
+
outputs=[output_table, ret_text, vol_text, sharpe_text]
|
|
|
|
|
|
|
| 87 |
)
|
| 88 |
|
| 89 |
+
demo.launch()
|
|
|