Spaces:
Runtime error
Runtime error
Commit
ยท
4752b73
1
Parent(s):
9ad025b
update
Browse files
app.py
CHANGED
|
@@ -71,40 +71,42 @@ Best results come from clean, well-lit images with clear subject isolation. Try
|
|
| 71 |
from image_process import prepare_image
|
| 72 |
from briarmbg import BriaRMBG
|
| 73 |
snapshot_download("briaai/RMBG-1.4", local_dir=RMBG_PRETRAINED_MODEL)
|
| 74 |
-
rmbg_net = BriaRMBG.from_pretrained(RMBG_PRETRAINED_MODEL).to(DEVICE)
|
| 75 |
-
rmbg_net.eval()
|
| 76 |
from triposg.pipelines.pipeline_triposg import TripoSGPipeline
|
| 77 |
snapshot_download("VAST-AI/TripoSG", local_dir=TRIPOSG_PRETRAINED_MODEL)
|
| 78 |
-
triposg_pipe = TripoSGPipeline.from_pretrained(TRIPOSG_PRETRAINED_MODEL).to(DEVICE, DTYPE)
|
| 79 |
|
| 80 |
# mv adapter
|
| 81 |
NUM_VIEWS = 6
|
| 82 |
from inference_ig2mv_sdxl import prepare_pipeline, preprocess_image, remove_bg
|
| 83 |
from mvadapter.utils import get_orthogonal_camera, tensor_to_image, make_image_grid
|
| 84 |
from mvadapter.utils.render import NVDiffRastContextWrapper, load_mesh, render
|
| 85 |
-
mv_adapter_pipe = prepare_pipeline(
|
| 86 |
-
base_model="stabilityai/stable-diffusion-xl-base-1.0",
|
| 87 |
-
vae_model="madebyollin/sdxl-vae-fp16-fix",
|
| 88 |
-
unet_model=None,
|
| 89 |
-
lora_model=None,
|
| 90 |
-
adapter_path="huanngzh/mv-adapter",
|
| 91 |
-
scheduler=None,
|
| 92 |
-
num_views=NUM_VIEWS,
|
| 93 |
-
device=DEVICE,
|
| 94 |
-
dtype=torch.float16,
|
| 95 |
-
)
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
transforms.
|
| 105 |
-
|
| 106 |
-
)
|
| 107 |
-
|
|
|
|
|
|
|
| 108 |
|
| 109 |
if not os.path.exists("checkpoints/RealESRGAN_x2plus.pth"):
|
| 110 |
hf_hub_download("dtarnow/UPscaler", filename="RealESRGAN_x2plus.pth", local_dir="checkpoints")
|
|
@@ -140,6 +142,8 @@ def run_full(image: str, req: gr.Request):
|
|
| 140 |
|
| 141 |
image_seg = prepare_image(image, bg_color=np.array([1.0, 1.0, 1.0]), rmbg_net=rmbg_net)
|
| 142 |
|
|
|
|
|
|
|
| 143 |
outputs = triposg_pipe(
|
| 144 |
image=image_seg,
|
| 145 |
generator=torch.Generator(device=triposg_pipe.device).manual_seed(seed),
|
|
@@ -199,6 +203,19 @@ def run_full(image: str, req: gr.Request):
|
|
| 199 |
.to(DEVICE)
|
| 200 |
)
|
| 201 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
image = Image.open(image)
|
| 203 |
image = remove_bg_fn(image)
|
| 204 |
image = preprocess_image(image, height, width)
|
|
@@ -207,6 +224,18 @@ def run_full(image: str, req: gr.Request):
|
|
| 207 |
if seed != -1 and isinstance(seed, int):
|
| 208 |
pipe_kwargs["generator"] = torch.Generator(device=DEVICE).manual_seed(seed)
|
| 209 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
images = mv_adapter_pipe(
|
| 211 |
"high quality",
|
| 212 |
height=height,
|
|
@@ -256,6 +285,9 @@ def run_full(image: str, req: gr.Request):
|
|
| 256 |
@spaces.GPU()
|
| 257 |
@torch.no_grad()
|
| 258 |
def run_segmentation(image: str):
|
|
|
|
|
|
|
|
|
|
| 259 |
image = prepare_image(image, bg_color=np.array([1.0, 1.0, 1.0]), rmbg_net=rmbg_net)
|
| 260 |
return image
|
| 261 |
|
|
@@ -270,6 +302,7 @@ def image_to_3d(
|
|
| 270 |
target_face_num: int,
|
| 271 |
req: gr.Request
|
| 272 |
):
|
|
|
|
| 273 |
outputs = triposg_pipe(
|
| 274 |
image=image,
|
| 275 |
generator=torch.Generator(device=triposg_pipe.device).manual_seed(seed),
|
|
@@ -333,6 +366,19 @@ def run_texture(image: Image, mesh_path: str, seed: int, req: gr.Request):
|
|
| 333 |
.to(DEVICE)
|
| 334 |
)
|
| 335 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 336 |
image = Image.open(image)
|
| 337 |
image = remove_bg_fn(image)
|
| 338 |
image = preprocess_image(image, height, width)
|
|
@@ -341,6 +387,18 @@ def run_texture(image: Image, mesh_path: str, seed: int, req: gr.Request):
|
|
| 341 |
if seed != -1 and isinstance(seed, int):
|
| 342 |
pipe_kwargs["generator"] = torch.Generator(device=DEVICE).manual_seed(seed)
|
| 343 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 344 |
images = mv_adapter_pipe(
|
| 345 |
"high quality",
|
| 346 |
height=height,
|
|
|
|
| 71 |
from image_process import prepare_image
|
| 72 |
from briarmbg import BriaRMBG
|
| 73 |
snapshot_download("briaai/RMBG-1.4", local_dir=RMBG_PRETRAINED_MODEL)
|
| 74 |
+
#rmbg_net = BriaRMBG.from_pretrained(RMBG_PRETRAINED_MODEL).to(DEVICE)
|
| 75 |
+
#rmbg_net.eval()
|
| 76 |
from triposg.pipelines.pipeline_triposg import TripoSGPipeline
|
| 77 |
snapshot_download("VAST-AI/TripoSG", local_dir=TRIPOSG_PRETRAINED_MODEL)
|
| 78 |
+
#triposg_pipe = TripoSGPipeline.from_pretrained(TRIPOSG_PRETRAINED_MODEL).to(DEVICE, DTYPE)
|
| 79 |
|
| 80 |
# mv adapter
|
| 81 |
NUM_VIEWS = 6
|
| 82 |
from inference_ig2mv_sdxl import prepare_pipeline, preprocess_image, remove_bg
|
| 83 |
from mvadapter.utils import get_orthogonal_camera, tensor_to_image, make_image_grid
|
| 84 |
from mvadapter.utils.render import NVDiffRastContextWrapper, load_mesh, render
|
| 85 |
+
#mv_adapter_pipe = prepare_pipeline(
|
| 86 |
+
# base_model="stabilityai/stable-diffusion-xl-base-1.0",
|
| 87 |
+
# vae_model="madebyollin/sdxl-vae-fp16-fix",
|
| 88 |
+
# unet_model=None,
|
| 89 |
+
# lora_model=None,
|
| 90 |
+
# adapter_path="huanngzh/mv-adapter",
|
| 91 |
+
# scheduler=None,
|
| 92 |
+
# num_views=NUM_VIEWS,
|
| 93 |
+
# device=DEVICE,
|
| 94 |
+
# dtype=torch.float16,
|
| 95 |
+
#)
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
#birefnet = AutoModelForImageSegmentation.from_pretrained(
|
| 99 |
+
# "ZhengPeng7/BiRefNet", trust_remote_code=True
|
| 100 |
+
# )
|
| 101 |
+
#birefnet.to(DEVICE)
|
| 102 |
+
#transform_image = transforms.Compose(
|
| 103 |
+
# [
|
| 104 |
+
# transforms.Resize((1024, 1024)),
|
| 105 |
+
# transforms.ToTensor(),
|
| 106 |
+
# transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
| 107 |
+
# ]
|
| 108 |
+
#)
|
| 109 |
+
#remove_bg_fn = lambda x: remove_bg(x, birefnet, transform_image, DEVICE)
|
| 110 |
|
| 111 |
if not os.path.exists("checkpoints/RealESRGAN_x2plus.pth"):
|
| 112 |
hf_hub_download("dtarnow/UPscaler", filename="RealESRGAN_x2plus.pth", local_dir="checkpoints")
|
|
|
|
| 142 |
|
| 143 |
image_seg = prepare_image(image, bg_color=np.array([1.0, 1.0, 1.0]), rmbg_net=rmbg_net)
|
| 144 |
|
| 145 |
+
triposg_pipe = TripoSGPipeline.from_pretrained(TRIPOSG_PRETRAINED_MODEL).to(DEVICE, DTYPE)
|
| 146 |
+
|
| 147 |
outputs = triposg_pipe(
|
| 148 |
image=image_seg,
|
| 149 |
generator=torch.Generator(device=triposg_pipe.device).manual_seed(seed),
|
|
|
|
| 203 |
.to(DEVICE)
|
| 204 |
)
|
| 205 |
|
| 206 |
+
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
| 207 |
+
"ZhengPeng7/BiRefNet", trust_remote_code=True
|
| 208 |
+
)
|
| 209 |
+
birefnet.to(DEVICE)
|
| 210 |
+
transform_image = transforms.Compose(
|
| 211 |
+
[
|
| 212 |
+
transforms.Resize((1024, 1024)),
|
| 213 |
+
transforms.ToTensor(),
|
| 214 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
| 215 |
+
]
|
| 216 |
+
)
|
| 217 |
+
remove_bg_fn = lambda x: remove_bg(x, birefnet, transform_image, DEVICE)
|
| 218 |
+
|
| 219 |
image = Image.open(image)
|
| 220 |
image = remove_bg_fn(image)
|
| 221 |
image = preprocess_image(image, height, width)
|
|
|
|
| 224 |
if seed != -1 and isinstance(seed, int):
|
| 225 |
pipe_kwargs["generator"] = torch.Generator(device=DEVICE).manual_seed(seed)
|
| 226 |
|
| 227 |
+
mv_adapter_pipe = prepare_pipeline(
|
| 228 |
+
base_model="stabilityai/stable-diffusion-xl-base-1.0",
|
| 229 |
+
vae_model="madebyollin/sdxl-vae-fp16-fix",
|
| 230 |
+
unet_model=None,
|
| 231 |
+
lora_model=None,
|
| 232 |
+
adapter_path="huanngzh/mv-adapter",
|
| 233 |
+
scheduler=None,
|
| 234 |
+
num_views=NUM_VIEWS,
|
| 235 |
+
device=DEVICE,
|
| 236 |
+
dtype=torch.float16,
|
| 237 |
+
)
|
| 238 |
+
|
| 239 |
images = mv_adapter_pipe(
|
| 240 |
"high quality",
|
| 241 |
height=height,
|
|
|
|
| 285 |
@spaces.GPU()
|
| 286 |
@torch.no_grad()
|
| 287 |
def run_segmentation(image: str):
|
| 288 |
+
snapshot_download("briaai/RMBG-1.4", local_dir=RMBG_PRETRAINED_MODEL)
|
| 289 |
+
rmbg_net = BriaRMBG.from_pretrained(RMBG_PRETRAINED_MODEL).to(DEVICE)
|
| 290 |
+
rmbg_net.eval()
|
| 291 |
image = prepare_image(image, bg_color=np.array([1.0, 1.0, 1.0]), rmbg_net=rmbg_net)
|
| 292 |
return image
|
| 293 |
|
|
|
|
| 302 |
target_face_num: int,
|
| 303 |
req: gr.Request
|
| 304 |
):
|
| 305 |
+
triposg_pipe = TripoSGPipeline.from_pretrained(TRIPOSG_PRETRAINED_MODEL).to(DEVICE, DTYPE)
|
| 306 |
outputs = triposg_pipe(
|
| 307 |
image=image,
|
| 308 |
generator=torch.Generator(device=triposg_pipe.device).manual_seed(seed),
|
|
|
|
| 366 |
.to(DEVICE)
|
| 367 |
)
|
| 368 |
|
| 369 |
+
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
| 370 |
+
"ZhengPeng7/BiRefNet", trust_remote_code=True
|
| 371 |
+
)
|
| 372 |
+
birefnet.to(DEVICE)
|
| 373 |
+
transform_image = transforms.Compose(
|
| 374 |
+
[
|
| 375 |
+
transforms.Resize((1024, 1024)),
|
| 376 |
+
transforms.ToTensor(),
|
| 377 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
| 378 |
+
]
|
| 379 |
+
)
|
| 380 |
+
remove_bg_fn = lambda x: remove_bg(x, birefnet, transform_image, DEVICE)
|
| 381 |
+
|
| 382 |
image = Image.open(image)
|
| 383 |
image = remove_bg_fn(image)
|
| 384 |
image = preprocess_image(image, height, width)
|
|
|
|
| 387 |
if seed != -1 and isinstance(seed, int):
|
| 388 |
pipe_kwargs["generator"] = torch.Generator(device=DEVICE).manual_seed(seed)
|
| 389 |
|
| 390 |
+
mv_adapter_pipe = prepare_pipeline(
|
| 391 |
+
base_model="stabilityai/stable-diffusion-xl-base-1.0",
|
| 392 |
+
vae_model="madebyollin/sdxl-vae-fp16-fix",
|
| 393 |
+
unet_model=None,
|
| 394 |
+
lora_model=None,
|
| 395 |
+
adapter_path="huanngzh/mv-adapter",
|
| 396 |
+
scheduler=None,
|
| 397 |
+
num_views=NUM_VIEWS,
|
| 398 |
+
device=DEVICE,
|
| 399 |
+
dtype=torch.float16,
|
| 400 |
+
)
|
| 401 |
+
|
| 402 |
images = mv_adapter_pipe(
|
| 403 |
"high quality",
|
| 404 |
height=height,
|