Spaces:
Running
Running
File size: 35,696 Bytes
f32824f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 |
"""
Advanced Adverse Drug Reaction (ADR) Analysis Tools
This module provides comprehensive pharmacovigilance capabilities including:
- Enhanced FAERS database searches with filtering
- Naranjo probability scale calculator
- Disproportionality analysis (PRR, ROR, IC)
- Case similarity analysis
- Temporal pattern analysis
"""
import requests
import re
import math
import logging
from datetime import datetime, timedelta
from typing import Dict, List, Any, Optional, Tuple
from collections import defaultdict, Counter
from caching import with_caching
from utils import with_error_handling, make_api_request
logger = logging.getLogger(__name__)
@with_error_handling
@with_caching(ttl=1800)
def enhanced_faers_search(
drug_name: str,
adverse_event: str = None,
age_range: str = None,
gender: str = None,
serious_only: bool = False,
limit: int = 100
) -> Dict[str, Any]:
"""
Enhanced FAERS search with filtering capabilities for pharmacovigilance analysis.
Args:
drug_name: Drug name to search for
adverse_event: Specific adverse event/reaction to filter by (optional)
age_range: Age range filter like "18-65" or ">65" (optional)
gender: Gender filter "1" (male) or "2" (female) (optional)
serious_only: If True, only return serious adverse events
limit: Maximum number of results (default 100)
Returns:
Dict with enhanced case data including demographics, outcomes, and temporal info
"""
if not drug_name or not drug_name.strip():
raise ValueError("Drug name cannot be empty")
# Build search query
search_parts = [f'patient.drug.medicinalproduct:"{drug_name.strip()}"']
if adverse_event:
search_parts.append(f'patient.reaction.reactionmeddrapt:"{adverse_event.strip()}"')
if serious_only:
search_parts.append('serious:"1"')
if gender in ["1", "2"]:
search_parts.append(f'patient.patientsex:"{gender}"')
search_query = " AND ".join(search_parts)
base_url = "https://api.fda.gov/drug/event.json"
query_params = {
"search": search_query,
"limit": min(max(1, limit), 1000)
}
response = make_api_request(base_url, query_params, timeout=15)
if response.status_code != 200:
if response.status_code == 404:
return {
"cases": [],
"total_found": 0,
"query_info": {
"drug": drug_name,
"adverse_event": adverse_event,
"filters_applied": {
"age_range": age_range,
"gender": gender,
"serious_only": serious_only
}
},
"message": "No matching cases found"
}
raise requests.exceptions.RequestException(f"Enhanced FAERS search failed: {response.status_code}")
data = response.json()
cases = []
for rec in data.get("results", []):
case = extract_case_details(rec, age_range)
if case: # Only include if age filter passes
cases.append(case)
# Calculate summary statistics
summary_stats = calculate_case_statistics(cases)
return {
"cases": cases,
"total_found": data.get("meta", {}).get("results", {}).get("total", 0),
"filtered_count": len(cases),
"query_info": {
"drug": drug_name,
"adverse_event": adverse_event,
"filters_applied": {
"age_range": age_range,
"gender": gender,
"serious_only": serious_only
}
},
"summary_statistics": summary_stats
}
def extract_case_details(rec: Dict, age_range: str = None) -> Optional[Dict]:
"""Extract and structure case details from FAERS record."""
patient = rec.get("patient", {})
# Extract patient demographics
age = patient.get("patientagegroup")
age_years = patient.get("patientage")
gender = patient.get("patientsex")
# Apply age filter if specified
if age_range and age_years:
try:
age_num = float(age_years)
if not passes_age_filter(age_num, age_range):
return None
except (ValueError, TypeError):
pass
# Extract drug information
drugs = []
for drug in patient.get("drug", []):
drug_info = {
"name": drug.get("medicinalproduct", ""),
"characterization": drug.get("drugcharacterization"), # 1=suspect, 2=concomitant, 3=interacting
"indication": drug.get("drugindication", ""),
"start_date": drug.get("drugstartdate", ""),
"end_date": drug.get("drugenddate", ""),
"dosage": drug.get("drugdosagetext", ""),
"route": drug.get("drugadministrationroute", "")
}
drugs.append(drug_info)
# Extract reactions
reactions = []
for reaction in patient.get("reaction", []):
reaction_info = {
"term": reaction.get("reactionmeddrapt", ""),
"outcome": reaction.get("reactionoutcome") # 1=recovered, 2=recovering, 3=not recovered, 4=recovered with sequelae, 5=fatal, 6=unknown
}
reactions.append(reaction_info)
# Extract seriousness criteria
seriousness = {
"serious": bool(int(rec.get("serious", "0"))),
"death": bool(int(rec.get("seriousnessdeath", "0"))),
"life_threatening": bool(int(rec.get("seriousnesslifethreatening", "0"))),
"hospitalization": bool(int(rec.get("seriousnesshospitalization", "0"))),
"disability": bool(int(rec.get("seriousnessdisabling", "0"))),
"congenital_anomaly": bool(int(rec.get("seriousnesscongenitalanomali", "0"))),
"other_serious": bool(int(rec.get("seriousnessother", "0")))
}
return {
"safety_report_id": rec.get("safetyreportid"),
"receive_date": rec.get("receivedate"),
"patient": {
"age": age_years,
"age_group": age,
"gender": gender, # 1=male, 2=female
"weight": patient.get("patientweight")
},
"drugs": drugs,
"reactions": reactions,
"seriousness": seriousness,
"reporter_qualification": rec.get("primarysource", {}).get("qualification"), # 1=physician, 2=pharmacist, etc.
"country": rec.get("occurcountry")
}
def passes_age_filter(age: float, age_range: str) -> bool:
"""Check if age passes the specified filter."""
age_range = age_range.strip()
if age_range.startswith(">"):
threshold = float(age_range[1:])
return age > threshold
elif age_range.startswith("<"):
threshold = float(age_range[1:])
return age < threshold
elif age_range.startswith(">="):
threshold = float(age_range[2:])
return age >= threshold
elif age_range.startswith("<="):
threshold = float(age_range[2:])
return age <= threshold
elif "-" in age_range:
min_age, max_age = map(float, age_range.split("-"))
return min_age <= age <= max_age
return True
def calculate_case_statistics(cases: List[Dict]) -> Dict[str, Any]:
"""Calculate summary statistics from case data."""
if not cases:
return {}
# Demographics
ages = [float(case["patient"]["age"]) for case in cases if case["patient"]["age"]]
genders = [case["patient"]["gender"] for case in cases if case["patient"]["gender"]]
# Outcomes
serious_cases = sum(1 for case in cases if case["seriousness"]["serious"])
fatal_cases = sum(1 for case in cases if case["seriousness"]["death"])
# Reporter types
reporter_types = [case["reporter_qualification"] for case in cases if case["reporter_qualification"]]
# Most common reactions
all_reactions = []
for case in cases:
all_reactions.extend([r["term"] for r in case["reactions"]])
reaction_counts = Counter(all_reactions)
stats = {
"total_cases": len(cases),
"serious_cases": serious_cases,
"serious_percentage": round(serious_cases / len(cases) * 100, 1),
"fatal_cases": fatal_cases,
"fatal_percentage": round(fatal_cases / len(cases) * 100, 1) if len(cases) > 0 else 0,
"demographics": {
"age_stats": {
"mean": round(sum(ages) / len(ages), 1) if ages else None,
"median": sorted(ages)[len(ages)//2] if ages else None,
"range": [min(ages), max(ages)] if ages else None
},
"gender_distribution": dict(Counter(genders))
},
"top_reactions": dict(reaction_counts.most_common(10)),
"reporter_types": dict(Counter(reporter_types))
}
return stats
@with_error_handling
def calculate_naranjo_score(
adverse_reaction_after_drug: str, # "yes", "no", "unknown"
reaction_improved_after_stopping: str, # "yes", "no", "unknown"
reaction_reappeared_after_readministration: str, # "yes", "no", "unknown"
alternative_causes_exist: str, # "yes", "no", "unknown"
reaction_when_placebo_given: str, # "yes", "no", "unknown"
drug_detected_in_blood: str, # "yes", "no", "unknown"
reaction_worse_with_higher_dose: str, # "yes", "no", "unknown"
similar_reaction_to_drug_before: str, # "yes", "no", "unknown"
adverse_event_confirmed_objectively: str, # "yes", "no", "unknown"
reaction_appeared_after_suspected_drug_given: str # "yes", "no", "unknown"
) -> Dict[str, Any]:
"""
Calculate Naranjo Adverse Drug Reaction Probability Scale.
The Naranjo scale helps determine the likelihood that an adverse event
is related to drug therapy rather than other factors.
Args:
All parameters should be "yes", "no", or "unknown"
Returns:
Dict with score, probability category, and detailed breakdown
"""
# Naranjo scoring system
questions = [
{
"question": "Are there previous conclusive reports on this reaction?",
"answer": adverse_reaction_after_drug,
"scores": {"yes": 1, "no": 0, "unknown": 0}
},
{
"question": "Did the adverse event appear after the suspected drug was administered?",
"answer": reaction_appeared_after_suspected_drug_given,
"scores": {"yes": 2, "no": -1, "unknown": 0}
},
{
"question": "Did the adverse reaction improve when the drug was discontinued or a specific antagonist was administered?",
"answer": reaction_improved_after_stopping,
"scores": {"yes": 1, "no": 0, "unknown": 0}
},
{
"question": "Did the adverse reaction reappear when the drug was readministered?",
"answer": reaction_reappeared_after_readministration,
"scores": {"yes": 2, "no": -1, "unknown": 0}
},
{
"question": "Are there alternative causes (other than the drug) that could on their own have caused the reaction?",
"answer": alternative_causes_exist,
"scores": {"yes": -1, "no": 2, "unknown": 0}
},
{
"question": "Did the reaction reappear when a placebo was given?",
"answer": reaction_when_placebo_given,
"scores": {"yes": -1, "no": 1, "unknown": 0}
},
{
"question": "Was the drug detected in blood (or other fluids) in concentrations known to be toxic?",
"answer": drug_detected_in_blood,
"scores": {"yes": 1, "no": 0, "unknown": 0}
},
{
"question": "Was the reaction more severe when the dose was increased or less severe when the dose was decreased?",
"answer": reaction_worse_with_higher_dose,
"scores": {"yes": 1, "no": 0, "unknown": 0}
},
{
"question": "Did the patient have a similar reaction to the same or similar drugs in any previous exposure?",
"answer": similar_reaction_to_drug_before,
"scores": {"yes": 1, "no": 0, "unknown": 0}
},
{
"question": "Was the adverse event confirmed by any objective evidence?",
"answer": adverse_event_confirmed_objectively,
"scores": {"yes": 1, "no": 0, "unknown": 0}
}
]
total_score = 0
question_details = []
for q in questions:
answer = q["answer"].lower().strip()
if answer not in q["scores"]:
raise ValueError(f"Invalid answer '{answer}'. Must be 'yes', 'no', or 'unknown'")
score = q["scores"][answer]
total_score += score
question_details.append({
"question": q["question"],
"answer": answer,
"points": score
})
# Determine probability category
if total_score >= 9:
category = "Definite"
probability = "≥95%"
interpretation = "The adverse reaction is definitely related to the drug."
elif total_score >= 5:
category = "Probable"
probability = "75-95%"
interpretation = "The adverse reaction is probably related to the drug."
elif total_score >= 1:
category = "Possible"
probability = "25-75%"
interpretation = "The adverse reaction is possibly related to the drug."
else:
category = "Doubtful"
probability = "<25%"
interpretation = "The adverse reaction is doubtfully related to the drug."
return {
"total_score": total_score,
"category": category,
"probability": probability,
"interpretation": interpretation,
"question_breakdown": question_details,
"scale_info": {
"name": "Naranjo Adverse Drug Reaction Probability Scale",
"reference": "Naranjo CA, et al. Clin Pharmacol Ther. 1981;30(2):239-245",
"scoring": {
"Definite": "≥9 points",
"Probable": "5-8 points",
"Possible": "1-4 points",
"Doubtful": "≤0 points"
}
}
}
@with_error_handling
@with_caching(ttl=3600)
def disproportionality_analysis(
drug_name: str,
adverse_event: str,
background_limit: int = 10000
) -> Dict[str, Any]:
"""
Perform disproportionality analysis to detect potential drug-adverse event signals.
Calculates Proportional Reporting Ratio (PRR), Reporting Odds Ratio (ROR),
and Information Component (IC) with confidence intervals.
Args:
drug_name: Drug of interest
adverse_event: Adverse event of interest
background_limit: Number of background cases to sample for comparison
Returns:
Dict with PRR, ROR, IC values and statistical significance
"""
try:
base_url = "https://api.fda.gov/drug/event.json"
# Get cases for drug + adverse event (a)
drug_ae_query = {
"search": f'patient.drug.medicinalproduct:"{drug_name}" AND patient.reaction.reactionmeddrapt:"{adverse_event}"',
"limit": 1
}
drug_ae_response = make_api_request(base_url, drug_ae_query, timeout=10)
if drug_ae_response and drug_ae_response.status_code == 200:
drug_ae_data = drug_ae_response.json()
a = drug_ae_data.get("meta", {}).get("results", {}).get("total", 0)
else:
a = 0
if a == 0:
return {
"drug": drug_name,
"adverse_event": adverse_event,
"message": "No cases found for this drug-adverse event combination",
"signal_detected": False,
"case_count": 0
}
# Get total cases for drug (a + b)
drug_total_query = {
"search": f'patient.drug.medicinalproduct:"{drug_name}"',
"limit": 1
}
drug_total_response = make_api_request(base_url, drug_total_query, timeout=10)
if drug_total_response and drug_total_response.status_code == 200:
drug_total_data = drug_total_response.json()
total_drug_cases = drug_total_data.get("meta", {}).get("results", {}).get("total", 0)
b = max(total_drug_cases - a, 1) # Ensure b is at least 1
else:
b = max(a * 5, 10) # Conservative estimate
# Get total cases for adverse event (a + c)
ae_total_query = {
"search": f'patient.reaction.reactionmeddrapt:"{adverse_event}"',
"limit": 1
}
ae_total_response = make_api_request(base_url, ae_total_query, timeout=10)
if ae_total_response and ae_total_response.status_code == 200:
ae_total_data = ae_total_response.json()
total_ae_cases = ae_total_data.get("meta", {}).get("results", {}).get("total", 0)
c = max(total_ae_cases - a, 1) # Avoid zero
else:
c = max(a * 10, 100) # Conservative estimate
# Estimate total background cases (d)
# Use a reasonable estimate based on FAERS database size
total_cases_estimate = 15000000 # Approximate FAERS database size
d = max(total_cases_estimate - a - b - c, 1000)
# Calculate disproportionality measures
results = calculate_disproportionality_measures(a, b, c, d)
# Add metadata
results.update({
"drug": drug_name,
"adverse_event": adverse_event,
"contingency_table": {
"drug_ae": a,
"drug_other_ae": b,
"other_drug_ae": c,
"other_drug_other_ae": d,
"total": a + b + c + d
},
"data_sources": {
"drug_ae_cases": "FAERS API direct query",
"total_drug_cases": "FAERS API direct query",
"total_ae_cases": "FAERS API direct query",
"background_estimate": "Statistical approximation"
},
"data_notes": [
"This analysis uses FAERS data which has inherent limitations",
"Results should be interpreted by qualified pharmacovigilance professionals",
"Background estimates are approximations due to API limitations",
"Consider confounding factors and reporting biases"
]
})
return results
except Exception as e:
logger.error(f"Error in disproportionality analysis: {e}")
return {
"drug": drug_name,
"adverse_event": adverse_event,
"error": str(e),
"message": "Analysis failed due to data access issues",
"signal_detected": False,
"case_count": 0
}
def calculate_disproportionality_measures(a: int, b: int, c: int, d: int) -> Dict[str, Any]:
"""
Calculate PRR, ROR, and IC with confidence intervals.
2x2 contingency table:
AE of Interest Other AEs
Drug of Interest a b
Other Drugs c d
"""
# Proportional Reporting Ratio (PRR)
prr = (a / (a + b)) / (c / (c + d)) if (a + b) > 0 and (c + d) > 0 else 0
# PRR 95% CI (using log transformation)
if a > 0:
log_prr = math.log(prr)
se_log_prr = math.sqrt(1/a + 1/c - 1/(a+b) - 1/(c+d))
prr_ci_lower = math.exp(log_prr - 1.96 * se_log_prr)
prr_ci_upper = math.exp(log_prr + 1.96 * se_log_prr)
else:
prr_ci_lower = prr_ci_upper = 0
# Reporting Odds Ratio (ROR)
ror = (a * d) / (b * c) if b > 0 and c > 0 else 0
# ROR 95% CI
if a > 0 and b > 0 and c > 0 and d > 0:
log_ror = math.log(ror)
se_log_ror = math.sqrt(1/a + 1/b + 1/c + 1/d)
ror_ci_lower = math.exp(log_ror - 1.96 * se_log_ror)
ror_ci_upper = math.exp(log_ror + 1.96 * se_log_ror)
else:
ror_ci_lower = ror_ci_upper = 0
# Information Component (IC)
expected = ((a + b) * (a + c)) / (a + b + c + d)
ic = math.log2(a / expected) if expected > 0 and a > 0 else 0
# IC 95% CI (simplified approximation)
if a > 0:
ic_se = 1 / (math.log(2) * math.sqrt(a))
ic_ci_lower = ic - 1.96 * ic_se
ic_ci_upper = ic + 1.96 * ic_se
else:
ic_ci_lower = ic_ci_upper = 0
# Signal detection criteria
prr_signal = prr >= 2.0 and prr_ci_lower > 1.0 and a >= 3
ror_signal = ror >= 2.0 and ror_ci_lower > 1.0 and a >= 3
ic_signal = ic_ci_lower > 0 and a >= 3
signal_detected = prr_signal or ror_signal or ic_signal
return {
"proportional_reporting_ratio": {
"value": round(prr, 3),
"confidence_interval_95": [round(prr_ci_lower, 3), round(prr_ci_upper, 3)],
"signal_detected": prr_signal,
"interpretation": "PRR ≥2 with lower CI >1 suggests potential signal" if prr_signal else "No signal detected by PRR criteria"
},
"reporting_odds_ratio": {
"value": round(ror, 3),
"confidence_interval_95": [round(ror_ci_lower, 3), round(ror_ci_upper, 3)],
"signal_detected": ror_signal,
"interpretation": "ROR ≥2 with lower CI >1 suggests potential signal" if ror_signal else "No signal detected by ROR criteria"
},
"information_component": {
"value": round(ic, 3),
"confidence_interval_95": [round(ic_ci_lower, 3), round(ic_ci_upper, 3)],
"signal_detected": ic_signal,
"interpretation": "IC lower CI >0 suggests potential signal" if ic_signal else "No signal detected by IC criteria"
},
"overall_signal_detected": signal_detected,
"case_count": a,
"signal_strength": "Strong" if (prr_signal and ror_signal and ic_signal) else
"Moderate" if signal_detected else "Weak/None"
}
@with_error_handling
@with_caching(ttl=1800)
def find_similar_cases(
reference_case_id: str,
similarity_threshold: float = 0.7,
limit: int = 50
) -> Dict[str, Any]:
"""
Find cases similar to a reference case based on patient characteristics,
drugs, and adverse events.
Args:
reference_case_id: FAERS safety report ID to use as reference
similarity_threshold: Minimum similarity score (0-1)
limit: Maximum number of similar cases to return
Returns:
Dict with similar cases and similarity scores
"""
# First, get the reference case details
from drug_data_endpoints import fetch_event_details
try:
ref_case = fetch_event_details(reference_case_id)
except Exception as e:
raise ValueError(f"Could not fetch reference case {reference_case_id}: {e}")
ref_drugs = [drug.lower() for drug in ref_case["drugs"]]
ref_reactions = [reaction.lower() for reaction in ref_case["reactions"]]
if not ref_drugs:
raise ValueError("Reference case has no drug information")
# Search for cases with similar drugs
primary_drug = ref_drugs[0] if ref_drugs else ""
similar_cases_response = enhanced_faers_search(
drug_name=primary_drug,
limit=min(limit * 3, 500) # Get more cases to filter
)
similar_cases = []
for case in similar_cases_response["cases"]:
case_drugs = [drug["name"].lower() for drug in case["drugs"] if drug["name"]]
case_reactions = [reaction["term"].lower() for reaction in case["reactions"] if reaction["term"]]
# Skip the reference case itself
if case["safety_report_id"] == reference_case_id:
continue
# Calculate similarity score
similarity_score = calculate_case_similarity(
ref_drugs, ref_reactions,
case_drugs, case_reactions,
ref_case.get("full_record", {}).get("patient", {}),
case.get("patient", {})
)
if similarity_score >= similarity_threshold:
similar_cases.append({
"case": case,
"similarity_score": similarity_score,
"similarity_factors": get_similarity_factors(
ref_drugs, ref_reactions, case_drugs, case_reactions
)
})
# Sort by similarity score
similar_cases.sort(key=lambda x: x["similarity_score"], reverse=True)
return {
"reference_case_id": reference_case_id,
"reference_drugs": ref_drugs,
"reference_reactions": ref_reactions,
"similar_cases": similar_cases[:limit],
"total_similar_found": len(similar_cases),
"similarity_threshold": similarity_threshold,
"analysis_summary": {
"most_common_shared_drugs": get_most_common_shared_elements(
[case["similarity_factors"]["shared_drugs"] for case in similar_cases]
),
"most_common_shared_reactions": get_most_common_shared_elements(
[case["similarity_factors"]["shared_reactions"] for case in similar_cases]
)
}
}
def calculate_case_similarity(
ref_drugs: List[str], ref_reactions: List[str],
case_drugs: List[str], case_reactions: List[str],
ref_patient: Dict, case_patient: Dict
) -> float:
"""Calculate similarity score between two cases."""
# Drug similarity (Jaccard index)
ref_drugs_set = set(ref_drugs)
case_drugs_set = set(case_drugs)
drug_intersection = len(ref_drugs_set & case_drugs_set)
drug_union = len(ref_drugs_set | case_drugs_set)
drug_similarity = drug_intersection / drug_union if drug_union > 0 else 0
# Reaction similarity (Jaccard index)
ref_reactions_set = set(ref_reactions)
case_reactions_set = set(case_reactions)
reaction_intersection = len(ref_reactions_set & case_reactions_set)
reaction_union = len(ref_reactions_set | case_reactions_set)
reaction_similarity = reaction_intersection / reaction_union if reaction_union > 0 else 0
# Patient similarity (age and gender)
patient_similarity = 0
similarity_factors = 0
# Age similarity
ref_age = ref_patient.get("patientage")
case_age = case_patient.get("age")
if ref_age and case_age:
try:
age_diff = abs(float(ref_age) - float(case_age))
age_similarity = max(0, 1 - age_diff / 50) # Normalize by 50 years
patient_similarity += age_similarity
similarity_factors += 1
except (ValueError, TypeError):
pass
# Gender similarity
ref_gender = ref_patient.get("patientsex")
case_gender = case_patient.get("gender")
if ref_gender and case_gender and ref_gender == case_gender:
patient_similarity += 1
similarity_factors += 1
elif ref_gender and case_gender:
similarity_factors += 1
if similarity_factors > 0:
patient_similarity /= similarity_factors
# Weighted overall similarity
# Drugs and reactions are most important, patient characteristics less so
overall_similarity = (
0.5 * drug_similarity +
0.4 * reaction_similarity +
0.1 * patient_similarity
)
return round(overall_similarity, 3)
def get_similarity_factors(
ref_drugs: List[str], ref_reactions: List[str],
case_drugs: List[str], case_reactions: List[str]
) -> Dict[str, List[str]]:
"""Get the specific shared elements between cases."""
shared_drugs = list(set(ref_drugs) & set(case_drugs))
shared_reactions = list(set(ref_reactions) & set(case_reactions))
return {
"shared_drugs": shared_drugs,
"shared_reactions": shared_reactions,
"unique_to_reference_drugs": list(set(ref_drugs) - set(case_drugs)),
"unique_to_case_drugs": list(set(case_drugs) - set(ref_drugs)),
"unique_to_reference_reactions": list(set(ref_reactions) - set(case_reactions)),
"unique_to_case_reactions": list(set(case_reactions) - set(ref_reactions))
}
def get_most_common_shared_elements(element_lists: List[List[str]]) -> Dict[str, int]:
"""Get the most commonly shared elements across multiple cases."""
all_elements = []
for element_list in element_lists:
all_elements.extend(element_list)
return dict(Counter(all_elements).most_common(10))
@with_error_handling
@with_caching(ttl=3600)
def temporal_analysis(
drug_name: str,
adverse_event: str = None,
limit: int = 500
) -> Dict[str, Any]:
"""
Analyze temporal patterns of adverse events for a drug.
Args:
drug_name: Drug to analyze
adverse_event: Specific adverse event (optional)
limit: Maximum cases to analyze
Returns:
Dict with temporal patterns and time-to-onset analysis
"""
# Get cases with temporal information
cases_response = enhanced_faers_search(
drug_name=drug_name,
adverse_event=adverse_event,
limit=limit
)
cases = cases_response["cases"]
if not cases:
return {
"drug": drug_name,
"adverse_event": adverse_event,
"message": "No cases found for temporal analysis"
}
# Analyze time to onset patterns
onset_times = []
reporting_dates = []
for case in cases:
# Extract drug start dates and reaction onset
for drug in case["drugs"]:
if drug["name"].lower() == drug_name.lower() and drug["start_date"]:
try:
# Parse date (YYYYMMDD format)
start_date = datetime.strptime(drug["start_date"], "%Y%m%d")
# For now, we'll use receive date as proxy for reaction onset
# In practice, you'd want more sophisticated temporal extraction
if case["receive_date"]:
receive_date = datetime.strptime(case["receive_date"], "%Y%m%d")
onset_time = (receive_date - start_date).days
if 0 <= onset_time <= 365: # Filter reasonable onset times
onset_times.append(onset_time)
reporting_dates.append(receive_date)
except (ValueError, TypeError):
continue
# Calculate temporal statistics
temporal_stats = {}
if onset_times:
onset_times.sort()
temporal_stats["time_to_onset"] = {
"median_days": onset_times[len(onset_times)//2],
"mean_days": round(sum(onset_times) / len(onset_times), 1),
"range_days": [min(onset_times), max(onset_times)],
"percentiles": {
"25th": onset_times[len(onset_times)//4],
"75th": onset_times[3*len(onset_times)//4],
"90th": onset_times[9*len(onset_times)//10] if len(onset_times) >= 10 else max(onset_times)
},
"distribution": categorize_onset_times(onset_times)
}
if reporting_dates:
# Analyze reporting trends over time
reporting_dates.sort()
temporal_stats["reporting_trends"] = analyze_reporting_trends(reporting_dates)
return {
"drug": drug_name,
"adverse_event": adverse_event,
"total_cases_analyzed": len(cases),
"cases_with_temporal_data": len(onset_times),
"temporal_analysis": temporal_stats,
"interpretation": interpret_temporal_patterns(temporal_stats)
}
def categorize_onset_times(onset_times: List[int]) -> Dict[str, int]:
"""Categorize onset times into clinically relevant periods."""
categories = {
"immediate_0_1_day": 0,
"acute_1_7_days": 0,
"subacute_1_4_weeks": 0,
"delayed_1_3_months": 0,
"late_3_12_months": 0
}
for onset in onset_times:
if onset <= 1:
categories["immediate_0_1_day"] += 1
elif onset <= 7:
categories["acute_1_7_days"] += 1
elif onset <= 28:
categories["subacute_1_4_weeks"] += 1
elif onset <= 90:
categories["delayed_1_3_months"] += 1
elif onset <= 365:
categories["late_3_12_months"] += 1
return categories
def analyze_reporting_trends(reporting_dates: List[datetime]) -> Dict[str, Any]:
"""Analyze trends in adverse event reporting over time."""
# Group by year
year_counts = defaultdict(int)
for date in reporting_dates:
year_counts[date.year] += 1
# Calculate trend
years = sorted(year_counts.keys())
if len(years) >= 3:
recent_avg = sum(year_counts[year] for year in years[-3:]) / 3
early_avg = sum(year_counts[year] for year in years[:3]) / 3
trend = "increasing" if recent_avg > early_avg * 1.2 else "decreasing" if recent_avg < early_avg * 0.8 else "stable"
else:
trend = "insufficient_data"
return {
"yearly_counts": dict(year_counts),
"date_range": [min(reporting_dates).year, max(reporting_dates).year],
"trend": trend,
"peak_year": max(year_counts.keys(), key=lambda k: year_counts[k]) if year_counts else None
}
def interpret_temporal_patterns(temporal_stats: Dict) -> List[str]:
"""Provide clinical interpretation of temporal patterns."""
interpretations = []
if "time_to_onset" in temporal_stats:
onset_data = temporal_stats["time_to_onset"]
median_onset = onset_data["median_days"]
if median_onset <= 1:
interpretations.append("Immediate onset pattern suggests Type A (dose-dependent) reaction or acute hypersensitivity")
elif median_onset <= 7:
interpretations.append("Acute onset pattern typical of many drug allergies and dose-related effects")
elif median_onset <= 28:
interpretations.append("Subacute onset may suggest immune-mediated or cumulative toxicity")
elif median_onset <= 90:
interpretations.append("Delayed onset pattern may indicate idiosyncratic reactions or chronic toxicity")
else:
interpretations.append("Late onset suggests possible chronic effects or delayed hypersensitivity")
# Check distribution
distribution = onset_data.get("distribution", {})
immediate = distribution.get("immediate_0_1_day", 0)
total_with_onset = sum(distribution.values())
if total_with_onset > 0:
immediate_pct = immediate / total_with_onset * 100
if immediate_pct > 50:
interpretations.append(f"High proportion ({immediate_pct:.1f}%) of immediate reactions suggests acute mechanism")
if "reporting_trends" in temporal_stats:
trend = temporal_stats["reporting_trends"]["trend"]
if trend == "increasing":
interpretations.append("Increasing reporting trend may indicate growing awareness or emerging safety signal")
elif trend == "decreasing":
interpretations.append("Decreasing reporting trend may suggest improved safety monitoring or reduced use")
if not interpretations:
interpretations.append("Insufficient temporal data for meaningful interpretation")
return interpretations |