Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import numpy as np | |
import time | |
import math | |
import random | |
import torch | |
import spaces | |
from diffusers import StableDiffusionXLInpaintPipeline | |
from PIL import Image, ImageFilter | |
max_64_bit_int = 2**63 - 1 | |
DESCRIPTION=""" | |
<h1 style="text-align: center;">Outpainting demo</h1> | |
<p style="text-align: center;">This uses code by Fabrice TIERCELIN</p> | |
<br/> | |
<a href='https://huggingface.co/spaces/clinteroni/outpainting-with-differential-diffusion-demo?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14'></a> | |
<br/> | |
""" | |
if torch.cuda.is_available(): | |
device = "cuda" | |
floatType = torch.float16 | |
variant = "fp16" | |
else: | |
device = "cpu" | |
floatType = torch.float32 | |
variant = None | |
DESCRIPTION+=f"<p>Running on {device}</p>" | |
pipe = StableDiffusionXLInpaintPipeline.from_pretrained("diffusers/stable-diffusion-xl-1.0-inpainting-0.1", torch_dtype = floatType, variant = variant) | |
pipe = pipe.to(device) | |
def update_seed(is_randomize_seed, seed): | |
if is_randomize_seed: | |
return random.randint(0, max_64_bit_int) | |
return seed | |
def toggle_debug(is_debug_mode): | |
return [gr.update(visible = is_debug_mode)] * 3 | |
def noise_color(color, noise): | |
return color + random.randint(- noise, noise) | |
def check( | |
input_image, | |
enlarge_top, | |
enlarge_right, | |
enlarge_bottom, | |
enlarge_left, | |
prompt, | |
negative_prompt, | |
smooth_border, | |
num_inference_steps, | |
guidance_scale, | |
image_guidance_scale, | |
strength, | |
denoising_steps, | |
is_randomize_seed, | |
seed, | |
debug_mode, | |
progress = gr.Progress()): | |
if input_image is None: | |
raise gr.Error("Please provide an image.") | |
if prompt is None or prompt == "": | |
raise gr.Error("Please provide a prompt input.") | |
if (not (enlarge_top is None)) and enlarge_top < 0: | |
raise gr.Error("Please provide positive top margin.") | |
if (not (enlarge_right is None)) and enlarge_right < 0: | |
raise gr.Error("Please provide positive right margin.") | |
if (not (enlarge_bottom is None)) and enlarge_bottom < 0: | |
raise gr.Error("Please provide positive bottom margin.") | |
if (not (enlarge_left is None)) and enlarge_left < 0: | |
raise gr.Error("Please provide positive left margin.") | |
if ( | |
(enlarge_top is None or enlarge_top == 0) | |
and (enlarge_right is None or enlarge_right == 0) | |
and (enlarge_bottom is None or enlarge_bottom == 0) | |
and (enlarge_left is None or enlarge_left == 0) | |
): | |
raise gr.Error("At least one border must be enlarged.") | |
def uncrop( | |
input_image, | |
enlarge_top, | |
enlarge_right, | |
enlarge_bottom, | |
enlarge_left, | |
prompt, | |
negative_prompt, | |
smooth_border, | |
num_inference_steps, | |
guidance_scale, | |
image_guidance_scale, | |
strength, | |
denoising_steps, | |
is_randomize_seed, | |
seed, | |
debug_mode, | |
progress = gr.Progress()): | |
check( | |
input_image, | |
enlarge_top, | |
enlarge_right, | |
enlarge_bottom, | |
enlarge_left, | |
prompt, | |
negative_prompt, | |
smooth_border, | |
num_inference_steps, | |
guidance_scale, | |
image_guidance_scale, | |
strength, | |
denoising_steps, | |
is_randomize_seed, | |
seed, | |
debug_mode | |
) | |
start = time.time() | |
progress(0, desc = "Preparing data...") | |
if enlarge_top is None or enlarge_top == "": | |
enlarge_top = 0 | |
if enlarge_right is None or enlarge_right == "": | |
enlarge_right = 0 | |
if enlarge_bottom is None or enlarge_bottom == "": | |
enlarge_bottom = 0 | |
if enlarge_left is None or enlarge_left == "": | |
enlarge_left = 0 | |
if negative_prompt is None: | |
negative_prompt = "" | |
if smooth_border is None: | |
smooth_border = 0 | |
if num_inference_steps is None: | |
num_inference_steps = 50 | |
if guidance_scale is None: | |
guidance_scale = 7 | |
if image_guidance_scale is None: | |
image_guidance_scale = 1.5 | |
if strength is None: | |
strength = 0.99 | |
if denoising_steps is None: | |
denoising_steps = 1000 | |
if seed is None: | |
seed = random.randint(0, max_64_bit_int) | |
random.seed(seed) | |
torch.manual_seed(seed) | |
original_height, original_width, original_channel = np.array(input_image).shape | |
output_width = enlarge_left + original_width + enlarge_right | |
output_height = enlarge_top + original_height + enlarge_bottom | |
# Enlarged image | |
enlarged_image = Image.new(mode = input_image.mode, size = (original_width, original_height), color = "black") | |
enlarged_image.paste(input_image, (0, 0)) | |
enlarged_image = enlarged_image.resize((output_width, output_height)) | |
enlarged_image = enlarged_image.filter(ImageFilter.BoxBlur(20)) | |
enlarged_image.paste(input_image, (enlarge_left, enlarge_top)) | |
horizontally_mirrored_input_image = input_image.transpose(Image.FLIP_LEFT_RIGHT).resize((original_width * 2, original_height)) | |
enlarged_image.paste(horizontally_mirrored_input_image, (enlarge_left - (original_width * 2), enlarge_top)) | |
enlarged_image.paste(horizontally_mirrored_input_image, (enlarge_left + original_width, enlarge_top)) | |
vertically_mirrored_input_image = input_image.transpose(Image.FLIP_TOP_BOTTOM).resize((original_width, original_height * 2)) | |
enlarged_image.paste(vertically_mirrored_input_image, (enlarge_left, enlarge_top - (original_height * 2))) | |
enlarged_image.paste(vertically_mirrored_input_image, (enlarge_left, enlarge_top + original_height)) | |
returned_input_image = input_image.transpose(Image.ROTATE_180).resize((original_width * 2, original_height * 2)) | |
enlarged_image.paste(returned_input_image, (enlarge_left - (original_width * 2), enlarge_top - (original_height * 2))) | |
enlarged_image.paste(returned_input_image, (enlarge_left - (original_width * 2), enlarge_top + original_height)) | |
enlarged_image.paste(returned_input_image, (enlarge_left + original_width, enlarge_top - (original_height * 2))) | |
enlarged_image.paste(returned_input_image, (enlarge_left + original_width, enlarge_top + original_height)) | |
enlarged_image = enlarged_image.filter(ImageFilter.BoxBlur(20)) | |
# Noise image | |
noise_image = Image.new(mode = input_image.mode, size = (output_width, output_height), color = "black") | |
enlarged_pixels = enlarged_image.load() | |
for i in range(output_width): | |
for j in range(output_height): | |
enlarged_pixel = enlarged_pixels[i, j] | |
noise = min(max(enlarge_left - i, i - (enlarge_left + original_width), enlarge_top - j, j - (enlarge_top + original_height), 0), 255) | |
noise_image.putpixel((i, j), (noise_color(enlarged_pixel[0], noise), noise_color(enlarged_pixel[1], noise), noise_color(enlarged_pixel[2], noise), 255)) | |
enlarged_image.paste(noise_image, (0, 0)) | |
enlarged_image.paste(input_image, (enlarge_left, enlarge_top)) | |
# Mask | |
mask_image = Image.new(mode = input_image.mode, size = (output_width, output_height), color = (255, 255, 255, 0)) | |
black_mask = Image.new(mode = input_image.mode, size = (original_width - smooth_border, original_height - smooth_border), color = (0, 0, 0, 0)) | |
mask_image.paste(black_mask, (enlarge_left + (smooth_border // 2), enlarge_top + (smooth_border // 2))) | |
mask_image = mask_image.filter(ImageFilter.BoxBlur((smooth_border // 2))) | |
# Limited to 1 million pixels | |
if 1024 * 1024 < output_width * output_height: | |
factor = ((1024 * 1024) / (output_width * output_height))**0.5 | |
process_width = math.floor(output_width * factor) | |
process_height = math.floor(output_height * factor) | |
limitation = " Due to technical limitations, the image has been downscaled and then upscaled."; | |
else: | |
process_width = output_width | |
process_height = output_height | |
limitation = ""; | |
# Width and height must be multiple of 8 | |
if (process_width % 8) != 0 or (process_height % 8) != 0: | |
if ((process_width - (process_width % 8) + 8) * (process_height - (process_height % 8) + 8)) <= (1024 * 1024): | |
process_width = process_width - (process_width % 8) + 8 | |
process_height = process_height - (process_height % 8) + 8 | |
elif (process_height % 8) <= (process_width % 8) and ((process_width - (process_width % 8) + 8) * process_height) <= (1024 * 1024): | |
process_width = process_width - (process_width % 8) + 8 | |
process_height = process_height - (process_height % 8) | |
elif (process_width % 8) <= (process_height % 8) and (process_width * (process_height - (process_height % 8) + 8)) <= (1024 * 1024): | |
process_width = process_width - (process_width % 8) | |
process_height = process_height - (process_height % 8) + 8 | |
else: | |
process_width = process_width - (process_width % 8) | |
process_height = process_height - (process_height % 8) | |
progress(None, desc = "Processing...") | |
output_image = uncrop_on_gpu( | |
seed, | |
process_width, | |
process_height, | |
prompt, | |
negative_prompt, | |
enlarged_image, | |
mask_image, | |
num_inference_steps, | |
guidance_scale, | |
image_guidance_scale, | |
strength, | |
denoising_steps | |
) | |
if limitation != "": | |
output_image = output_image.resize((output_width, output_height)) | |
if debug_mode == False: | |
input_image = None | |
enlarged_image = None | |
mask_image = None | |
end = time.time() | |
secondes = int(end - start) | |
minutes = math.floor(secondes / 60) | |
secondes = secondes - (minutes * 60) | |
hours = math.floor(minutes / 60) | |
minutes = minutes - (hours * 60) | |
return [ | |
output_image, | |
("Start again to get a different result. " if is_randomize_seed else "") + "The new image is " + str(output_width) + " pixels large and " + str(output_height) + " pixels high, so an image of " + f'{output_width * output_height:,}' + " pixels. The image has been generated in " + ((str(hours) + " h, ") if hours != 0 else "") + ((str(minutes) + " min, ") if hours != 0 or minutes != 0 else "") + str(secondes) + " sec." + limitation, | |
input_image, | |
enlarged_image, | |
mask_image | |
] | |
def uncrop_on_gpu( | |
seed, | |
process_width, | |
process_height, | |
prompt, | |
negative_prompt, | |
enlarged_image, | |
mask_image, | |
num_inference_steps, | |
guidance_scale, | |
image_guidance_scale, | |
strength, | |
denoising_steps | |
): | |
return pipe( | |
seeds = [seed], | |
width = process_width, | |
height = process_height, | |
prompt = prompt, | |
negative_prompt = negative_prompt, | |
image = enlarged_image, | |
mask_image = mask_image, | |
num_inference_steps = num_inference_steps, | |
guidance_scale = guidance_scale, | |
image_guidance_scale = image_guidance_scale, | |
strength = strength, | |
denoising_steps = denoising_steps, | |
show_progress_bar = True | |
).images[0] | |
with gr.Blocks() as interface: | |
gr.HTML( | |
DESCRIPTION | |
) | |
with gr.Row(): | |
with gr.Column(): | |
dummy_1 = gr.Label(visible = False) | |
with gr.Column(): | |
enlarge_top = gr.Number(minimum = 0, value = 64, precision = 0, label = "Uncrop on top ⬆️", info = "in pixels") | |
with gr.Column(): | |
dummy_2 = gr.Label(visible = False) | |
with gr.Row(): | |
with gr.Column(): | |
enlarge_left = gr.Number(minimum = 0, value = 64, precision = 0, label = "Uncrop on left ⬅️", info = "in pixels") | |
with gr.Column(): | |
input_image = gr.Image(label = "Your image", sources = ["upload", "webcam", "clipboard"], type = "pil") | |
with gr.Column(): | |
enlarge_right = gr.Number(minimum = 0, value = 64, precision = 0, label = "Uncrop on right ➡️", info = "in pixels") | |
with gr.Row(): | |
with gr.Column(): | |
dummy_3 = gr.Label(visible = False) | |
with gr.Column(): | |
enlarge_bottom = gr.Number(minimum = 0, value = 64, precision = 0, label = "Uncrop on bottom ⬇️", info = "in pixels") | |
with gr.Column(): | |
dummy_4 = gr.Label(visible = False) | |
with gr.Row(): | |
prompt = gr.Textbox(label = "Prompt", info = "Describe the subject, the background and the style of image; 77 token limit", placeholder = "Describe what you want to see in the entire image", lines = 2) | |
with gr.Row(): | |
with gr.Accordion("Advanced options", open = False): | |
negative_prompt = gr.Textbox(label = "Negative prompt", placeholder = "Describe what you do NOT want to see in the entire image", value = 'Border, frame, painting, scribbling, smear, noise, blur, watermark') | |
smooth_border = gr.Slider(minimum = 0, maximum = 1024, value = 0, step = 2, label = "Smooth border", info = "lower=preserve original, higher=seamless") | |
num_inference_steps = gr.Slider(minimum = 10, maximum = 100, value = 50, step = 1, label = "Number of inference steps", info = "lower=faster, higher=image quality") | |
guidance_scale = gr.Slider(minimum = 1, maximum = 13, value = 7, step = 0.1, label = "Classifier-Free Guidance Scale", info = "lower=image quality, higher=follow the prompt") | |
image_guidance_scale = gr.Slider(minimum = 1, value = 1.5, step = 0.1, label = "Image Guidance Scale", info = "lower=image quality, higher=follow the image") | |
strength = gr.Slider(value = 0.99, minimum = 0.01, maximum = 1.0, step = 0.01, label = "Strength", info = "lower=follow the original area (discouraged), higher=redraw from scratch") | |
denoising_steps = gr.Number(minimum = 0, value = 1000, step = 1, label = "Denoising", info = "lower=irrelevant result, higher=relevant result") | |
randomize_seed = gr.Checkbox(label = "\U0001F3B2 Randomize seed", value = True, info = "If checked, result is always different") | |
seed = gr.Slider(minimum = 0, maximum = max_64_bit_int, step = 1, randomize = True, label = "Seed") | |
debug_mode = gr.Checkbox(label = "Debug mode", value = False, info = "Show intermediate results") | |
with gr.Row(): | |
submit = gr.Button("🚀 Outpaint", variant = "primary") | |
with gr.Row(): | |
uncropped_image = gr.Image(label = "Outpainted image") | |
with gr.Row(): | |
information = gr.HTML() | |
with gr.Row(): | |
original_image = gr.Image(label = "Original image", visible = False) | |
with gr.Row(): | |
enlarged_image = gr.Image(label = "Enlarged image", visible = False) | |
with gr.Row(): | |
mask_image = gr.Image(label = "Mask image", visible = False) | |
submit.click(fn = update_seed, inputs = [ | |
randomize_seed, | |
seed | |
], outputs = [ | |
seed | |
], queue = False, show_progress = False).then(toggle_debug, debug_mode, [ | |
original_image, | |
enlarged_image, | |
mask_image | |
], queue = False, show_progress = False).then(check, inputs = [ | |
input_image, | |
enlarge_top, | |
enlarge_right, | |
enlarge_bottom, | |
enlarge_left, | |
prompt, | |
negative_prompt, | |
smooth_border, | |
num_inference_steps, | |
guidance_scale, | |
image_guidance_scale, | |
strength, | |
denoising_steps, | |
randomize_seed, | |
seed, | |
debug_mode | |
], outputs = [], queue = False, | |
show_progress = False).success(uncrop, inputs = [ | |
input_image, | |
enlarge_top, | |
enlarge_right, | |
enlarge_bottom, | |
enlarge_left, | |
prompt, | |
negative_prompt, | |
smooth_border, | |
num_inference_steps, | |
guidance_scale, | |
image_guidance_scale, | |
strength, | |
denoising_steps, | |
randomize_seed, | |
seed, | |
debug_mode | |
], outputs = [ | |
uncropped_image, | |
information, | |
original_image, | |
enlarged_image, | |
mask_image | |
], scroll_to_output = True) | |
gr.Examples( | |
run_on_click = True, | |
fn = uncrop, | |
inputs = [ | |
input_image, | |
enlarge_top, | |
enlarge_right, | |
enlarge_bottom, | |
enlarge_left, | |
prompt, | |
negative_prompt, | |
smooth_border, | |
num_inference_steps, | |
guidance_scale, | |
image_guidance_scale, | |
strength, | |
denoising_steps, | |
randomize_seed, | |
seed, | |
debug_mode | |
], | |
outputs = [ | |
uncropped_image, | |
information, | |
original_image, | |
enlarged_image, | |
mask_image | |
], | |
examples = [ | |
[ | |
"./examples/Coucang.jpg", | |
417, | |
0, | |
417, | |
0, | |
"A white Coucang, in a tree, ultrarealistic, realistic, photorealistic, 8k, bokeh", | |
"Border, frame, painting, drawing, cartoon, anime, 3d, scribbling, smear, noise, blur, watermark", | |
0, | |
50, | |
7, | |
1.5, | |
0.99, | |
1000, | |
False, | |
123, | |
False | |
], | |
], | |
cache_examples = False, | |
) | |
gr.Markdown( | |
""" | |
## Credit | |
The [example image](https://commons.wikimedia.org/wiki/File:Coucang.jpg) is by Aprisonsan | |
and licensed under CC-BY-SA 4.0 International. | |
""" | |
) | |
interface.queue().launch() | |