import gradio as gr import pipeline title="EfficientNetV2 Deepfakes Video Detector" description="EfficientNetV2 Deepfakes Image Detector by using frame-by-frame detection." video_interface = gr.Interface(pipeline.deepfakes_video_predict, gr.Video(), "text", examples = ["videos/celeb_synthesis.mp4", "videos/real-1.mp4"], cache_examples = False ) image_interface = gr.Interface(pipeline.deepfakes_image_predict, gr.Image(), "text", examples = ["images/lady.jpg", "images/fake_image.jpg"], cache_examples=False ) audio_interface = gr.Interface(pipeline.deepfakes_audio_predict, gr.Audio(), "text", examples = ["audios/DF_E_2000027.flac", "audios/DF_E_2000031.flac"], cache_examples = False) app = gr.TabbedInterface(interface_list= [image_interface, video_interface, audio_interface], tab_names = ['Image inference', 'Video inference', 'Audio inference']) if __name__ == '__main__': app.launch(show_error=True)