Kimata commited on
Commit
dacce75
·
1 Parent(s): d65254d

remove mtcnn detector

Browse files
__pycache__/pipeline.cpython-39.pyc CHANGED
Binary files a/__pycache__/pipeline.cpython-39.pyc and b/__pycache__/pipeline.cpython-39.pyc differ
 
__pycache__/rawnet.cpython-39.pyc CHANGED
Binary files a/__pycache__/rawnet.cpython-39.pyc and b/__pycache__/rawnet.cpython-39.pyc differ
 
pipeline.py CHANGED
@@ -16,7 +16,6 @@ zip_ref.close()
16
 
17
 
18
  # Load models.
19
- mtcnn = MTCNN(margin=14, keep_all=True, factor=0.7, device='cpu')
20
  model = tf.keras.models.load_model("efficientnet-b0/")
21
 
22
 
@@ -24,7 +23,7 @@ model = tf.keras.models.load_model("efficientnet-b0/")
24
  class DetectionPipeline:
25
  """Pipeline class for detecting faces in the frames of a video file."""
26
 
27
- def __init__(self, detector, n_frames=None, batch_size=60, resize=None, input_modality = 'video'):
28
  """Constructor for DetectionPipeline class.
29
 
30
  Keyword Arguments:
@@ -36,7 +35,6 @@ class DetectionPipeline:
36
  detection. A value less than 1 results in downsampling and a value greater than
37
  1 result in upsampling. (default: {None})
38
  """
39
- self.detector = detector
40
  self.n_frames = n_frames
41
  self.batch_size = batch_size
42
  self.resize = resize
@@ -79,25 +77,9 @@ class DetectionPipeline:
79
 
80
  # When batch is full, detect faces and reset frame list
81
  if len(frames) % self.batch_size == 0 or j == sample[-1]:
 
 
82
 
83
- boxes, _ = self.detector.detect(frames)
84
-
85
- for i in range(len(frames)):
86
- if boxes[i] is None:
87
- faces.append(face2) #append previous face frame if no face is detected
88
- continue
89
-
90
- box = boxes[i][0].astype(int)
91
- frame = frames[i]
92
- face = frame[box[1]:box[3], box[0]:box[2]]
93
-
94
- if not face.any():
95
- faces.append(face2) #append previous face frame if no face is detected
96
- continue
97
-
98
- face2 = cv2.resize(face, (224, 224))
99
- faces.append(face2)
100
- frames = []
101
  v_cap.release()
102
  return faces
103
 
@@ -106,21 +88,13 @@ class DetectionPipeline:
106
  #Perform inference for image modality.
107
  print('Reading image')
108
  # print(f"Image path is: {filename}")
109
- # image = cv2.imread(filename)
110
  image = cv2.cvtColor(filename, cv2.COLOR_BGR2RGB)
111
- boxes, _ = self.detector.detect(image)
112
-
113
- if boxes is None:
114
- print('No faces found')
115
-
116
- box = boxes[0].astype(int)
117
- face = image[box[1]:box[3], box[0]:box[2]]
118
- face = cv2.resize(face, (224, 224))
119
 
120
- if not face.any():
121
- print("No faces found...")
122
 
123
- return face
124
 
125
  elif self.input_modality == 'audio':
126
  print("INput modality is audio.")
@@ -134,8 +108,8 @@ class DetectionPipeline:
134
  else:
135
  raise ValueError("Invalid input modality. Must be either 'video' or image")
136
 
137
- detection_video_pipeline = DetectionPipeline(detector=mtcnn, n_frames=5, batch_size=1, input_modality='video')
138
- detection_image_pipeline = DetectionPipeline(detector=mtcnn, batch_size = 1, input_modality = 'image')
139
 
140
  def deepfakes_video_predict(input_video):
141
 
@@ -206,8 +180,8 @@ def load_audio_model():
206
  return model
207
 
208
  audio_label_map = {
209
- 0: "real",
210
- 1: "fake"
211
  }
212
 
213
  def deepfakes_audio_predict(input_audio):
 
16
 
17
 
18
  # Load models.
 
19
  model = tf.keras.models.load_model("efficientnet-b0/")
20
 
21
 
 
23
  class DetectionPipeline:
24
  """Pipeline class for detecting faces in the frames of a video file."""
25
 
26
+ def __init__(self, n_frames=None, batch_size=60, resize=None, input_modality = 'video'):
27
  """Constructor for DetectionPipeline class.
28
 
29
  Keyword Arguments:
 
35
  detection. A value less than 1 results in downsampling and a value greater than
36
  1 result in upsampling. (default: {None})
37
  """
 
38
  self.n_frames = n_frames
39
  self.batch_size = batch_size
40
  self.resize = resize
 
77
 
78
  # When batch is full, detect faces and reset frame list
79
  if len(frames) % self.batch_size == 0 or j == sample[-1]:
80
+ face2 = cv2.resize(frame, (224, 224))
81
+ faces.append(face2)
82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83
  v_cap.release()
84
  return faces
85
 
 
88
  #Perform inference for image modality.
89
  print('Reading image')
90
  # print(f"Image path is: {filename}")
 
91
  image = cv2.cvtColor(filename, cv2.COLOR_BGR2RGB)
92
+ image = cv2.resize(image, (224, 224))
 
 
 
 
 
 
 
93
 
94
+ # if not face.any():
95
+ # print("No faces found...")
96
 
97
+ return image
98
 
99
  elif self.input_modality == 'audio':
100
  print("INput modality is audio.")
 
108
  else:
109
  raise ValueError("Invalid input modality. Must be either 'video' or image")
110
 
111
+ detection_video_pipeline = DetectionPipeline(n_frames=5, batch_size=1, input_modality='video')
112
+ detection_image_pipeline = DetectionPipeline(batch_size = 1, input_modality = 'image')
113
 
114
  def deepfakes_video_predict(input_video):
115
 
 
180
  return model
181
 
182
  audio_label_map = {
183
+ 0: "Real audio",
184
+ 1: "Fake audio"
185
  }
186
 
187
  def deepfakes_audio_predict(input_audio):