Update app.py
Browse files
app.py
CHANGED
|
@@ -7,141 +7,75 @@ import panel as pn
|
|
| 7 |
from PIL import Image
|
| 8 |
from transformers import CLIPModel, CLIPProcessor
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
"brand-github": "https://github.com/holoviz/panel",
|
| 14 |
-
"brand-twitter": "https://twitter.com/Panel_Org",
|
| 15 |
-
"brand-linkedin": "https://www.linkedin.com/company/panel-org",
|
| 16 |
-
"message-circle": "https://discourse.holoviz.org/",
|
| 17 |
-
"brand-discord": "https://discord.gg/AXRHnJU6sP",
|
| 18 |
-
}
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
async def random_url(_):
|
| 22 |
-
pet = random.choice(["cat", "dog"])
|
| 23 |
-
api_url = f"https://api.the{pet}api.com/v1/images/search"
|
| 24 |
-
async with aiohttp.ClientSession() as session:
|
| 25 |
-
async with session.get(api_url) as resp:
|
| 26 |
-
return (await resp.json())[0]["url"]
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
@pn.cache
|
| 30 |
-
def load_processor_model(
|
| 31 |
-
processor_name: str, model_name: str
|
| 32 |
-
) -> Tuple[CLIPProcessor, CLIPModel]:
|
| 33 |
-
processor = CLIPProcessor.from_pretrained(processor_name)
|
| 34 |
-
model = CLIPModel.from_pretrained(model_name)
|
| 35 |
-
return processor, model
|
| 36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
|
|
|
| 42 |
|
|
|
|
|
|
|
| 43 |
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
"openai/clip-vit-base-patch32", "openai/clip-vit-base-patch32"
|
| 47 |
-
)
|
| 48 |
-
inputs = processor(
|
| 49 |
-
text=class_items,
|
| 50 |
-
images=[image],
|
| 51 |
-
return_tensors="pt", # pytorch tensors
|
| 52 |
-
)
|
| 53 |
-
outputs = model(**inputs)
|
| 54 |
-
logits_per_image = outputs.logits_per_image
|
| 55 |
-
class_likelihoods = logits_per_image.softmax(dim=1).detach().numpy()
|
| 56 |
-
return class_likelihoods[0]
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
async def process_inputs(class_names: List[str], image_url: str):
|
| 60 |
-
"""
|
| 61 |
-
High level function that takes in the user inputs and returns the
|
| 62 |
-
classification results as panel objects.
|
| 63 |
-
"""
|
| 64 |
-
try:
|
| 65 |
-
main.disabled = True
|
| 66 |
-
if not image_url:
|
| 67 |
-
yield "##### ⚠️ Provide an image URL"
|
| 68 |
-
return
|
| 69 |
-
|
| 70 |
-
yield "##### ⚙ Fetching image and running model..."
|
| 71 |
-
try:
|
| 72 |
-
pil_img = await open_image_url(image_url)
|
| 73 |
-
img = pn.pane.Image(pil_img, height=400, align="center")
|
| 74 |
-
except Exception as e:
|
| 75 |
-
yield f"##### 😔 Something went wrong, please try a different URL!"
|
| 76 |
-
return
|
| 77 |
-
|
| 78 |
-
class_items = class_names.split(",")
|
| 79 |
-
class_likelihoods = get_similarity_scores(class_items, pil_img)
|
| 80 |
|
| 81 |
-
# build the results column
|
| 82 |
-
results = pn.Column("##### 🎉 Here are the results!", img)
|
| 83 |
-
|
| 84 |
-
for class_item, class_likelihood in zip(class_items, class_likelihoods):
|
| 85 |
-
row_label = pn.widgets.StaticText(
|
| 86 |
-
name=class_item.strip(), value=f"{class_likelihood:.2%}", align="center"
|
| 87 |
-
)
|
| 88 |
-
row_bar = pn.indicators.Progress(
|
| 89 |
-
value=int(class_likelihood * 100),
|
| 90 |
-
sizing_mode="stretch_width",
|
| 91 |
-
bar_color="secondary",
|
| 92 |
-
margin=(0, 10),
|
| 93 |
-
design=pn.theme.Material,
|
| 94 |
-
)
|
| 95 |
-
results.append(pn.Column(row_label, row_bar))
|
| 96 |
-
yield results
|
| 97 |
-
finally:
|
| 98 |
-
main.disabled = False
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
# create widgets
|
| 102 |
-
randomize_url = pn.widgets.Button(name="Randomize URL", align="end")
|
| 103 |
-
|
| 104 |
-
image_url = pn.widgets.TextInput(
|
| 105 |
-
name="Image URL to classify",
|
| 106 |
-
value=pn.bind(random_url, randomize_url),
|
| 107 |
-
)
|
| 108 |
-
class_names = pn.widgets.TextInput(
|
| 109 |
-
name="Comma separated class names",
|
| 110 |
-
placeholder="Enter possible class names, e.g. cat, dog",
|
| 111 |
-
value="cat, dog, parrot",
|
| 112 |
-
)
|
| 113 |
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
pn.Row(image_url, randomize_url),
|
| 117 |
-
class_names,
|
| 118 |
-
)
|
| 119 |
|
| 120 |
-
#
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
|
|
|
|
|
|
|
|
|
| 124 |
)
|
| 125 |
|
| 126 |
-
#
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
# create dashboard
|
| 135 |
-
main = pn.WidgetBox(
|
| 136 |
-
input_widgets,
|
| 137 |
-
interactive_result,
|
| 138 |
-
footer_row,
|
| 139 |
-
)
|
| 140 |
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
header_background="#F08080",
|
| 147 |
-
).servable(title=title)
|
|
|
|
| 7 |
from PIL import Image
|
| 8 |
from transformers import CLIPModel, CLIPProcessor
|
| 9 |
|
| 10 |
+
# imports we will use
|
| 11 |
+
import warnings
|
| 12 |
+
warnings.simplefilter(action='ignore', category=FutureWarning)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
+
import altair as alt
|
| 15 |
+
import pandas as pd
|
| 16 |
+
from vega_datasets import data as vega_data
|
| 17 |
+
import panel as pn
|
| 18 |
+
import datetime as dt
|
| 19 |
+
|
| 20 |
+
#load data
|
| 21 |
+
df2=pd.read_csv("https://raw.githubusercontent.com/dallascard/SI649_public/main/altair_hw3/approval_topline.csv")
|
| 22 |
+
df2['timestamp']=pd.to_datetime(df2['timestamp'])
|
| 23 |
+
df2=pd.melt(df2, id_vars=['president', 'subgroup', 'timestamp'], value_vars=['approve','disapprove']).rename(columns={'variable':'choice', 'value':'rate'})
|
| 24 |
+
|
| 25 |
+
# Enable Panel extensions
|
| 26 |
+
pn.extension(design ='bootstrap')
|
| 27 |
+
pn.extension('vega')
|
| 28 |
+
|
| 29 |
+
# Define a function to create and return a plot
|
| 30 |
+
df2 = df2[df2['choice'] =='approve']
|
| 31 |
+
def create_plot(subgroup, date_range, moving_av_window):
|
| 32 |
+
|
| 33 |
+
# Apply any required transformations to the data in pandas
|
| 34 |
+
filtered = df2[df2['subgroup'] == subgroup]
|
| 35 |
+
filtered = filtered[(filtered['timestamp'].dt.date >= date_range[0]) & (filtered['timestamp'].dt.date <= date_range[1])]
|
| 36 |
+
filtered['smoothed'] = filtered['rate'].rolling(window=moving_av_window, min_periods=1).mean().shift(-1)
|
| 37 |
+
|
| 38 |
+
# Line chart
|
| 39 |
+
line = alt.Chart(filtered).mark_line(color='red').encode(
|
| 40 |
+
x=alt.X('timestamp:T'),
|
| 41 |
+
y = alt.Y('smoothed').scale(domain=(30, 60))
|
| 42 |
+
)
|
| 43 |
|
| 44 |
+
# Scatter plot with individual polls
|
| 45 |
+
scatter = alt.Chart(filtered).mark_point(filled=True, color='gray', size = 6).encode(
|
| 46 |
+
x = alt.X('timestamp:T'),
|
| 47 |
+
y = alt.Y('rate').scale(domain=(30, 60)),
|
| 48 |
+
)
|
| 49 |
|
| 50 |
+
# Put them together
|
| 51 |
+
plot = line + scatter
|
| 52 |
|
| 53 |
+
# Return the combined chart
|
| 54 |
+
return plot
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
+
# Create the selection widget
|
| 58 |
+
select = pn.widgets.Select(name='Select', options=['All polls','Adults','Voters'])
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
+
# Create the slider for the date range
|
| 61 |
+
# Reference https://panel.holoviz.org/reference/widgets/DateRangeSlider.html
|
| 62 |
+
date_range_slider = pn.widgets.DateRangeSlider(
|
| 63 |
+
name='Date Range Slider',
|
| 64 |
+
start=dt.datetime(2021, 1, 26).date(), end=dt.datetime(2023, 2, 14).date(),
|
| 65 |
+
value=(dt.datetime(2021, 1, 26).date(), dt.datetime(2023, 2, 14).date()),
|
| 66 |
+
step=2
|
| 67 |
)
|
| 68 |
|
| 69 |
+
# Create the slider for the moving average window
|
| 70 |
+
# Reference Int Slider: https://panel.holoviz.org/reference/widgets/IntSlider.html
|
| 71 |
+
win_slider = pn.widgets.IntSlider(name='Moving Average Window', start=1, end=80, step=1, value=20)
|
| 72 |
+
|
| 73 |
+
# Bind the widgets to the create_plot function
|
| 74 |
+
bplot = pn.bind(create_plot, subgroup=select,
|
| 75 |
+
date_range=date_range_slider,moving_av_window = win_slider )
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
+
# Combine everything in a Panel Column to create an app
|
| 78 |
+
# Reference: https://panel.holoviz.org/how_to/streamlit_migration/interactivity.html
|
| 79 |
+
viz4 = pn.Column(bplot,select,date_range_slider,win_slider)
|
| 80 |
+
# set the app to be servable
|
| 81 |
+
viz4.show()
|
|
|
|
|
|