chw223 commited on
Commit
49158f8
·
verified ·
1 Parent(s): e16023d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +62 -128
app.py CHANGED
@@ -7,141 +7,75 @@ import panel as pn
7
  from PIL import Image
8
  from transformers import CLIPModel, CLIPProcessor
9
 
10
- pn.extension(design="bootstrap", sizing_mode="stretch_width")
11
-
12
- ICON_URLS = {
13
- "brand-github": "https://github.com/holoviz/panel",
14
- "brand-twitter": "https://twitter.com/Panel_Org",
15
- "brand-linkedin": "https://www.linkedin.com/company/panel-org",
16
- "message-circle": "https://discourse.holoviz.org/",
17
- "brand-discord": "https://discord.gg/AXRHnJU6sP",
18
- }
19
-
20
-
21
- async def random_url(_):
22
- pet = random.choice(["cat", "dog"])
23
- api_url = f"https://api.the{pet}api.com/v1/images/search"
24
- async with aiohttp.ClientSession() as session:
25
- async with session.get(api_url) as resp:
26
- return (await resp.json())[0]["url"]
27
-
28
-
29
- @pn.cache
30
- def load_processor_model(
31
- processor_name: str, model_name: str
32
- ) -> Tuple[CLIPProcessor, CLIPModel]:
33
- processor = CLIPProcessor.from_pretrained(processor_name)
34
- model = CLIPModel.from_pretrained(model_name)
35
- return processor, model
36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
38
- async def open_image_url(image_url: str) -> Image:
39
- async with aiohttp.ClientSession() as session:
40
- async with session.get(image_url) as resp:
41
- return Image.open(io.BytesIO(await resp.read()))
 
42
 
 
 
43
 
44
- def get_similarity_scores(class_items: List[str], image: Image) -> List[float]:
45
- processor, model = load_processor_model(
46
- "openai/clip-vit-base-patch32", "openai/clip-vit-base-patch32"
47
- )
48
- inputs = processor(
49
- text=class_items,
50
- images=[image],
51
- return_tensors="pt", # pytorch tensors
52
- )
53
- outputs = model(**inputs)
54
- logits_per_image = outputs.logits_per_image
55
- class_likelihoods = logits_per_image.softmax(dim=1).detach().numpy()
56
- return class_likelihoods[0]
57
-
58
-
59
- async def process_inputs(class_names: List[str], image_url: str):
60
- """
61
- High level function that takes in the user inputs and returns the
62
- classification results as panel objects.
63
- """
64
- try:
65
- main.disabled = True
66
- if not image_url:
67
- yield "##### ⚠️ Provide an image URL"
68
- return
69
-
70
- yield "##### ⚙ Fetching image and running model..."
71
- try:
72
- pil_img = await open_image_url(image_url)
73
- img = pn.pane.Image(pil_img, height=400, align="center")
74
- except Exception as e:
75
- yield f"##### 😔 Something went wrong, please try a different URL!"
76
- return
77
-
78
- class_items = class_names.split(",")
79
- class_likelihoods = get_similarity_scores(class_items, pil_img)
80
 
81
- # build the results column
82
- results = pn.Column("##### 🎉 Here are the results!", img)
83
-
84
- for class_item, class_likelihood in zip(class_items, class_likelihoods):
85
- row_label = pn.widgets.StaticText(
86
- name=class_item.strip(), value=f"{class_likelihood:.2%}", align="center"
87
- )
88
- row_bar = pn.indicators.Progress(
89
- value=int(class_likelihood * 100),
90
- sizing_mode="stretch_width",
91
- bar_color="secondary",
92
- margin=(0, 10),
93
- design=pn.theme.Material,
94
- )
95
- results.append(pn.Column(row_label, row_bar))
96
- yield results
97
- finally:
98
- main.disabled = False
99
-
100
-
101
- # create widgets
102
- randomize_url = pn.widgets.Button(name="Randomize URL", align="end")
103
-
104
- image_url = pn.widgets.TextInput(
105
- name="Image URL to classify",
106
- value=pn.bind(random_url, randomize_url),
107
- )
108
- class_names = pn.widgets.TextInput(
109
- name="Comma separated class names",
110
- placeholder="Enter possible class names, e.g. cat, dog",
111
- value="cat, dog, parrot",
112
- )
113
 
114
- input_widgets = pn.Column(
115
- "##### 😊 Click randomize or paste a URL to start classifying!",
116
- pn.Row(image_url, randomize_url),
117
- class_names,
118
- )
119
 
120
- # add interactivity
121
- interactive_result = pn.panel(
122
- pn.bind(process_inputs, image_url=image_url, class_names=class_names),
123
- height=600,
 
 
 
124
  )
125
 
126
- # add footer
127
- footer_row = pn.Row(pn.Spacer(), align="center")
128
- for icon, url in ICON_URLS.items():
129
- href_button = pn.widgets.Button(icon=icon, width=35, height=35)
130
- href_button.js_on_click(code=f"window.open('{url}')")
131
- footer_row.append(href_button)
132
- footer_row.append(pn.Spacer())
133
-
134
- # create dashboard
135
- main = pn.WidgetBox(
136
- input_widgets,
137
- interactive_result,
138
- footer_row,
139
- )
140
 
141
- title = "Panel Demo - Image Classification"
142
- pn.template.BootstrapTemplate(
143
- title=title,
144
- main=main,
145
- main_max_width="min(50%, 698px)",
146
- header_background="#F08080",
147
- ).servable(title=title)
 
7
  from PIL import Image
8
  from transformers import CLIPModel, CLIPProcessor
9
 
10
+ # imports we will use
11
+ import warnings
12
+ warnings.simplefilter(action='ignore', category=FutureWarning)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
 
14
+ import altair as alt
15
+ import pandas as pd
16
+ from vega_datasets import data as vega_data
17
+ import panel as pn
18
+ import datetime as dt
19
+
20
+ #load data
21
+ df2=pd.read_csv("https://raw.githubusercontent.com/dallascard/SI649_public/main/altair_hw3/approval_topline.csv")
22
+ df2['timestamp']=pd.to_datetime(df2['timestamp'])
23
+ df2=pd.melt(df2, id_vars=['president', 'subgroup', 'timestamp'], value_vars=['approve','disapprove']).rename(columns={'variable':'choice', 'value':'rate'})
24
+
25
+ # Enable Panel extensions
26
+ pn.extension(design ='bootstrap')
27
+ pn.extension('vega')
28
+
29
+ # Define a function to create and return a plot
30
+ df2 = df2[df2['choice'] =='approve']
31
+ def create_plot(subgroup, date_range, moving_av_window):
32
+
33
+ # Apply any required transformations to the data in pandas
34
+ filtered = df2[df2['subgroup'] == subgroup]
35
+ filtered = filtered[(filtered['timestamp'].dt.date >= date_range[0]) & (filtered['timestamp'].dt.date <= date_range[1])]
36
+ filtered['smoothed'] = filtered['rate'].rolling(window=moving_av_window, min_periods=1).mean().shift(-1)
37
+
38
+ # Line chart
39
+ line = alt.Chart(filtered).mark_line(color='red').encode(
40
+ x=alt.X('timestamp:T'),
41
+ y = alt.Y('smoothed').scale(domain=(30, 60))
42
+ )
43
 
44
+ # Scatter plot with individual polls
45
+ scatter = alt.Chart(filtered).mark_point(filled=True, color='gray', size = 6).encode(
46
+ x = alt.X('timestamp:T'),
47
+ y = alt.Y('rate').scale(domain=(30, 60)),
48
+ )
49
 
50
+ # Put them together
51
+ plot = line + scatter
52
 
53
+ # Return the combined chart
54
+ return plot
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56
 
57
+ # Create the selection widget
58
+ select = pn.widgets.Select(name='Select', options=['All polls','Adults','Voters'])
 
 
 
59
 
60
+ # Create the slider for the date range
61
+ # Reference https://panel.holoviz.org/reference/widgets/DateRangeSlider.html
62
+ date_range_slider = pn.widgets.DateRangeSlider(
63
+ name='Date Range Slider',
64
+ start=dt.datetime(2021, 1, 26).date(), end=dt.datetime(2023, 2, 14).date(),
65
+ value=(dt.datetime(2021, 1, 26).date(), dt.datetime(2023, 2, 14).date()),
66
+ step=2
67
  )
68
 
69
+ # Create the slider for the moving average window
70
+ # Reference Int Slider: https://panel.holoviz.org/reference/widgets/IntSlider.html
71
+ win_slider = pn.widgets.IntSlider(name='Moving Average Window', start=1, end=80, step=1, value=20)
72
+
73
+ # Bind the widgets to the create_plot function
74
+ bplot = pn.bind(create_plot, subgroup=select,
75
+ date_range=date_range_slider,moving_av_window = win_slider )
 
 
 
 
 
 
 
76
 
77
+ # Combine everything in a Panel Column to create an app
78
+ # Reference: https://panel.holoviz.org/how_to/streamlit_migration/interactivity.html
79
+ viz4 = pn.Column(bplot,select,date_range_slider,win_slider)
80
+ # set the app to be servable
81
+ viz4.show()