jibo / app.py
chriswu25's picture
Update app.py
74444ae verified
import spaces
import os
import json
import time
import torch
from PIL import Image
from tqdm import tqdm
import gradio as gr
from safetensors.torch import save_file
from src.pipeline import FluxPipeline
from src.transformer_flux import FluxTransformer2DModel
from src.lora_helper import set_single_lora, set_multi_lora, unset_lora
# Initialize the image processor
base_path = "black-forest-labs/FLUX.1-dev"
lora_base_path = "./models"
pipe = FluxPipeline.from_pretrained(base_path, torch_dtype=torch.bfloat16)
transformer = FluxTransformer2DModel.from_pretrained(base_path, subfolder="transformer", torch_dtype=torch.bfloat16)
pipe.transformer = transformer
# 移除 pipe.to("cuda"),默认使用CPU
def clear_cache(transformer):
for name, attn_processor in transformer.attn_processors.items():
attn_processor.bank_kv.clear()
# Define the Gradio interface
@spaces.GPU() # 改为 @spaces.CPU() 或直接移除,因为免费层没有GPU
def single_condition_generate_image(prompt, spatial_img, height, width, seed, control_type):
# Set the control type
if control_type == "Ghibli":
lora_path = os.path.join(lora_base_path, "Ghibli.safetensors")
set_single_lora(pipe.transformer, lora_path, lora_weights=[1], cond_size=512, device="cpu")
# Process the image
spatial_imgs = [spatial_img] if spatial_img else []
image = pipe(
prompt,
height=int(height),
width=int(width),
guidance_scale=3.5,
num_inference_steps=15, # 减少步数以适应CPU
max_sequence_length=512,
generator=torch.Generator("cpu").manual_seed(seed),
subject_images=[],
spatial_images=spatial_imgs,
cond_size=512,
).images[0]
clear_cache(pipe.transformer)
return image
# Define the Gradio interface components
control_types = ["Ghibli"]
# Example data (调整分辨率以适应CPU)
single_examples = [
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/00.png"), 512, 512, 5, "Ghibli"],
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/02.png"), 512, 512, 42, "Ghibli"],
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/03.png"), 512, 512, 1, "Ghibli"],
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/04.png"), 512, 512, 1, "Ghibli"],
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/06.png"), 512, 512, 1, "Ghibli"],
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/07.png"), 512, 512, 1, "Ghibli"],
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/08.png"), 512, 512, 1, "Ghibli"],
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/09.png"), 512, 512, 1, "Ghibli"],
]
# Create the Gradio Blocks interface
with gr.Blocks() as demo:
gr.Markdown("# Ghibli Studio Control Image Generation with EasyControl")
gr.Markdown("The model is trained on **only 100 real Asian faces** paired with **GPT-4o-generated Ghibli-style counterparts**, and it preserves facial features while applying the iconic anime aesthetic.")
gr.Markdown("Generate images using EasyControl with Ghibli control LoRAs.(Running on CPU due to free tier limitations; expect slower performance and lower resolution.)")
gr.Markdown("**[Attention!!]**:The recommended prompts for using Ghibli Control LoRA should include the trigger words: `Ghibli Studio style, Charming hand-drawn anime-style illustration`")
gr.Markdown("😊😊If you like this demo, please give us a star (github: [EasyControl](https://github.com/Xiaojiu-z/EasyControl))")
with gr.Tab("Ghibli Condition Generation"):
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Prompt", value="Ghibli Studio style, Charming hand-drawn anime-style illustration")
spatial_img = gr.Image(label="Ghibli Image", type="pil")
height = gr.Slider(minimum=256, maximum=512, step=64, label="Height", value=512) # 限制最大分辨率
width = gr.Slider(minimum=256, maximum=512, step=64, label="Width", value=512) # 限制最大分辨率
seed = gr.Number(label="Seed", value=42)
control_type = gr.Dropdown(choices=control_types, label="Control Type")
single_generate_btn = gr.Button("Generate Image")
with gr.Column():
single_output_image = gr.Image(label="Generated Image")
gr.Examples(
examples=single_examples,
inputs=[prompt, spatial_img, height, width, seed, control_type],
outputs=single_output_image,
fn=single_condition_generate_image,
cache_examples=False,
label="Single Condition Examples"
)
single_generate_btn.click(
single_condition_generate_image,
inputs=[prompt, spatial_img, height, width, seed, control_type],
outputs=single_output_image
)
# Launch the Gradio app
demo.queue().launch()