|
import spaces |
|
import os |
|
import json |
|
import time |
|
import torch |
|
from PIL import Image |
|
from tqdm import tqdm |
|
import gradio as gr |
|
|
|
from safetensors.torch import save_file |
|
from src.pipeline import FluxPipeline |
|
from src.transformer_flux import FluxTransformer2DModel |
|
from src.lora_helper import set_single_lora, set_multi_lora, unset_lora |
|
|
|
|
|
base_path = "black-forest-labs/FLUX.1-dev" |
|
lora_base_path = "./models" |
|
|
|
pipe = FluxPipeline.from_pretrained(base_path, torch_dtype=torch.bfloat16) |
|
transformer = FluxTransformer2DModel.from_pretrained(base_path, subfolder="transformer", torch_dtype=torch.bfloat16) |
|
pipe.transformer = transformer |
|
|
|
|
|
def clear_cache(transformer): |
|
for name, attn_processor in transformer.attn_processors.items(): |
|
attn_processor.bank_kv.clear() |
|
|
|
|
|
@spaces.GPU() |
|
def single_condition_generate_image(prompt, spatial_img, height, width, seed, control_type): |
|
|
|
if control_type == "Ghibli": |
|
lora_path = os.path.join(lora_base_path, "Ghibli.safetensors") |
|
set_single_lora(pipe.transformer, lora_path, lora_weights=[1], cond_size=512, device="cpu") |
|
|
|
|
|
spatial_imgs = [spatial_img] if spatial_img else [] |
|
image = pipe( |
|
prompt, |
|
height=int(height), |
|
width=int(width), |
|
guidance_scale=3.5, |
|
num_inference_steps=15, |
|
max_sequence_length=512, |
|
generator=torch.Generator("cpu").manual_seed(seed), |
|
subject_images=[], |
|
spatial_images=spatial_imgs, |
|
cond_size=512, |
|
).images[0] |
|
clear_cache(pipe.transformer) |
|
return image |
|
|
|
|
|
control_types = ["Ghibli"] |
|
|
|
|
|
single_examples = [ |
|
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/00.png"), 512, 512, 5, "Ghibli"], |
|
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/02.png"), 512, 512, 42, "Ghibli"], |
|
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/03.png"), 512, 512, 1, "Ghibli"], |
|
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/04.png"), 512, 512, 1, "Ghibli"], |
|
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/06.png"), 512, 512, 1, "Ghibli"], |
|
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/07.png"), 512, 512, 1, "Ghibli"], |
|
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/08.png"), 512, 512, 1, "Ghibli"], |
|
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/09.png"), 512, 512, 1, "Ghibli"], |
|
] |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Ghibli Studio Control Image Generation with EasyControl") |
|
gr.Markdown("The model is trained on **only 100 real Asian faces** paired with **GPT-4o-generated Ghibli-style counterparts**, and it preserves facial features while applying the iconic anime aesthetic.") |
|
gr.Markdown("Generate images using EasyControl with Ghibli control LoRAs.(Running on CPU due to free tier limitations; expect slower performance and lower resolution.)") |
|
|
|
gr.Markdown("**[Attention!!]**:The recommended prompts for using Ghibli Control LoRA should include the trigger words: `Ghibli Studio style, Charming hand-drawn anime-style illustration`") |
|
gr.Markdown("😊😊If you like this demo, please give us a star (github: [EasyControl](https://github.com/Xiaojiu-z/EasyControl))") |
|
|
|
with gr.Tab("Ghibli Condition Generation"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
prompt = gr.Textbox(label="Prompt", value="Ghibli Studio style, Charming hand-drawn anime-style illustration") |
|
spatial_img = gr.Image(label="Ghibli Image", type="pil") |
|
height = gr.Slider(minimum=256, maximum=512, step=64, label="Height", value=512) |
|
width = gr.Slider(minimum=256, maximum=512, step=64, label="Width", value=512) |
|
seed = gr.Number(label="Seed", value=42) |
|
control_type = gr.Dropdown(choices=control_types, label="Control Type") |
|
single_generate_btn = gr.Button("Generate Image") |
|
with gr.Column(): |
|
single_output_image = gr.Image(label="Generated Image") |
|
|
|
gr.Examples( |
|
examples=single_examples, |
|
inputs=[prompt, spatial_img, height, width, seed, control_type], |
|
outputs=single_output_image, |
|
fn=single_condition_generate_image, |
|
cache_examples=False, |
|
label="Single Condition Examples" |
|
) |
|
|
|
single_generate_btn.click( |
|
single_condition_generate_image, |
|
inputs=[prompt, spatial_img, height, width, seed, control_type], |
|
outputs=single_output_image |
|
) |
|
|
|
|
|
demo.queue().launch() |