|  | import torch | 
					
						
						|  | import torch.nn as nn | 
					
						
						|  | import torch.nn.functional as F | 
					
						
						|  | from time import time | 
					
						
						|  | import numpy as np | 
					
						
						|  |  | 
					
						
						|  | def timeit(tag, t): | 
					
						
						|  | print("{}: {}s".format(tag, time() - t)) | 
					
						
						|  | return time() | 
					
						
						|  |  | 
					
						
						|  | def pc_normalize(pc): | 
					
						
						|  | l = pc.shape[0] | 
					
						
						|  | centroid = np.mean(pc, axis=0) | 
					
						
						|  | pc = pc - centroid | 
					
						
						|  | m = np.max(np.sqrt(np.sum(pc**2, axis=1))) | 
					
						
						|  | pc = pc / m | 
					
						
						|  | return pc | 
					
						
						|  |  | 
					
						
						|  | def square_distance(src, dst): | 
					
						
						|  | """ | 
					
						
						|  | Calculate Euclid distance between each two points. | 
					
						
						|  |  | 
					
						
						|  | src^T * dst = xn * xm + yn * ym + zn * zm; | 
					
						
						|  | sum(src^2, dim=-1) = xn*xn + yn*yn + zn*zn; | 
					
						
						|  | sum(dst^2, dim=-1) = xm*xm + ym*ym + zm*zm; | 
					
						
						|  | dist = (xn - xm)^2 + (yn - ym)^2 + (zn - zm)^2 | 
					
						
						|  | = sum(src**2,dim=-1)+sum(dst**2,dim=-1)-2*src^T*dst | 
					
						
						|  |  | 
					
						
						|  | Input: | 
					
						
						|  | src: source points, [B, N, C] | 
					
						
						|  | dst: target points, [B, M, C] | 
					
						
						|  | Output: | 
					
						
						|  | dist: per-point square distance, [B, N, M] | 
					
						
						|  | """ | 
					
						
						|  | B, N, _ = src.shape | 
					
						
						|  | _, M, _ = dst.shape | 
					
						
						|  | dist = -2 * torch.matmul(src, dst.permute(0, 2, 1)) | 
					
						
						|  | dist += torch.sum(src ** 2, -1).view(B, N, 1) | 
					
						
						|  | dist += torch.sum(dst ** 2, -1).view(B, 1, M) | 
					
						
						|  | return dist | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def index_points(points, idx): | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | Input: | 
					
						
						|  | points: input points data, [B, N, C] | 
					
						
						|  | idx: sample index data, [B, S] | 
					
						
						|  | Return: | 
					
						
						|  | new_points:, indexed points data, [B, S, C] | 
					
						
						|  | """ | 
					
						
						|  | device = points.device | 
					
						
						|  | B = points.shape[0] | 
					
						
						|  | view_shape = list(idx.shape) | 
					
						
						|  | view_shape[1:] = [1] * (len(view_shape) - 1) | 
					
						
						|  | repeat_shape = list(idx.shape) | 
					
						
						|  | repeat_shape[0] = 1 | 
					
						
						|  | batch_indices = torch.arange(B, dtype=torch.long).view(view_shape).repeat(repeat_shape) | 
					
						
						|  | new_points = points[batch_indices, idx, :] | 
					
						
						|  | return new_points | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def farthest_point_sample(xyz, npoint): | 
					
						
						|  | """ | 
					
						
						|  | Input: | 
					
						
						|  | xyz: pointcloud data, [B, N, 3] | 
					
						
						|  | npoint: number of samples | 
					
						
						|  | Return: | 
					
						
						|  | centroids: sampled pointcloud index, [B, npoint] | 
					
						
						|  | """ | 
					
						
						|  | device = xyz.device | 
					
						
						|  | B, N, C = xyz.shape | 
					
						
						|  | centroids = torch.zeros(B, npoint, dtype=torch.long).to(device) | 
					
						
						|  | distance = torch.ones(B, N).to(device) * 1e10 | 
					
						
						|  | farthest = torch.randint(0, N, (B,), dtype=torch.long).to(device) | 
					
						
						|  | batch_indices = torch.arange(B, dtype=torch.long).to(device) | 
					
						
						|  | for i in range(npoint): | 
					
						
						|  | centroids[:, i] = farthest | 
					
						
						|  | centroid = xyz[batch_indices, farthest, :].view(B, 1, 3) | 
					
						
						|  | dist = torch.sum((xyz - centroid) ** 2, -1) | 
					
						
						|  | mask = dist < distance | 
					
						
						|  | distance[mask] = dist[mask] | 
					
						
						|  | farthest = torch.max(distance, -1)[1] | 
					
						
						|  | return centroids | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def query_ball_point(radius, nsample, xyz, new_xyz): | 
					
						
						|  | """ | 
					
						
						|  | Input: | 
					
						
						|  | radius: local region radius | 
					
						
						|  | nsample: max sample number in local region | 
					
						
						|  | xyz: all points, [B, N, 3] | 
					
						
						|  | new_xyz: query points, [B, S, 3] | 
					
						
						|  | Return: | 
					
						
						|  | group_idx: grouped points index, [B, S, nsample] | 
					
						
						|  | """ | 
					
						
						|  | device = xyz.device | 
					
						
						|  | B, N, C = xyz.shape | 
					
						
						|  | _, S, _ = new_xyz.shape | 
					
						
						|  | group_idx = torch.arange(N, dtype=torch.long).to(device).view(1, 1, N).repeat([B, S, 1]) | 
					
						
						|  | sqrdists = square_distance(new_xyz, xyz) | 
					
						
						|  | group_idx[sqrdists > radius ** 2] = N | 
					
						
						|  | group_idx = group_idx.sort(dim=-1)[0][:, :, :nsample] | 
					
						
						|  | group_first = group_idx[:, :, 0].view(B, S, 1).repeat([1, 1, nsample]) | 
					
						
						|  | mask = group_idx == N | 
					
						
						|  | group_idx[mask] = group_first[mask] | 
					
						
						|  | return group_idx | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def sample_and_group(npoint, radius, nsample, xyz, points, returnfps=False): | 
					
						
						|  | """ | 
					
						
						|  | Input: | 
					
						
						|  | npoint: | 
					
						
						|  | radius: | 
					
						
						|  | nsample: | 
					
						
						|  | xyz: input points position data, [B, N, 3] | 
					
						
						|  | points: input points data, [B, N, D] | 
					
						
						|  | Return: | 
					
						
						|  | new_xyz: sampled points position data, [B, npoint, nsample, 3] | 
					
						
						|  | new_points: sampled points data, [B, npoint, nsample, 3+D] | 
					
						
						|  | """ | 
					
						
						|  | B, N, C = xyz.shape | 
					
						
						|  | S = npoint | 
					
						
						|  | fps_idx = farthest_point_sample(xyz, npoint) | 
					
						
						|  | new_xyz = index_points(xyz, fps_idx) | 
					
						
						|  | idx = query_ball_point(radius, nsample, xyz, new_xyz) | 
					
						
						|  | grouped_xyz = index_points(xyz, idx) | 
					
						
						|  | grouped_xyz_norm = grouped_xyz - new_xyz.view(B, S, 1, C) | 
					
						
						|  |  | 
					
						
						|  | if points is not None: | 
					
						
						|  | grouped_points = index_points(points, idx) | 
					
						
						|  | new_points = torch.cat([grouped_xyz_norm, grouped_points], dim=-1) | 
					
						
						|  | else: | 
					
						
						|  | new_points = grouped_xyz_norm | 
					
						
						|  | if returnfps: | 
					
						
						|  | return new_xyz, new_points, grouped_xyz, fps_idx | 
					
						
						|  | else: | 
					
						
						|  | return new_xyz, new_points | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def sample_and_group_all(xyz, points): | 
					
						
						|  | """ | 
					
						
						|  | Input: | 
					
						
						|  | xyz: input points position data, [B, N, 3] | 
					
						
						|  | points: input points data, [B, N, D] | 
					
						
						|  | Return: | 
					
						
						|  | new_xyz: sampled points position data, [B, 1, 3] | 
					
						
						|  | new_points: sampled points data, [B, 1, N, 3+D] | 
					
						
						|  | """ | 
					
						
						|  | device = xyz.device | 
					
						
						|  | B, N, C = xyz.shape | 
					
						
						|  | new_xyz = torch.zeros(B, 1, C).to(device) | 
					
						
						|  | grouped_xyz = xyz.view(B, 1, N, C) | 
					
						
						|  | if points is not None: | 
					
						
						|  | new_points = torch.cat([grouped_xyz, points.view(B, 1, N, -1)], dim=-1) | 
					
						
						|  | else: | 
					
						
						|  | new_points = grouped_xyz | 
					
						
						|  | return new_xyz, new_points | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class PointNetSetAbstraction(nn.Module): | 
					
						
						|  | def __init__(self, npoint, radius, nsample, in_channel, mlp, group_all): | 
					
						
						|  | super(PointNetSetAbstraction, self).__init__() | 
					
						
						|  | self.npoint = npoint | 
					
						
						|  | self.radius = radius | 
					
						
						|  | self.nsample = nsample | 
					
						
						|  | self.mlp_convs = nn.ModuleList() | 
					
						
						|  | self.mlp_bns = nn.ModuleList() | 
					
						
						|  | last_channel = in_channel | 
					
						
						|  | for out_channel in mlp: | 
					
						
						|  | self.mlp_convs.append(nn.Conv2d(last_channel, out_channel, 1)) | 
					
						
						|  | self.mlp_bns.append(nn.BatchNorm2d(out_channel)) | 
					
						
						|  | last_channel = out_channel | 
					
						
						|  | self.group_all = group_all | 
					
						
						|  |  | 
					
						
						|  | def forward(self, xyz, points): | 
					
						
						|  | """ | 
					
						
						|  | Input: | 
					
						
						|  | xyz: input points position data, [B, C, N] | 
					
						
						|  | points: input points data, [B, D, N] | 
					
						
						|  | Return: | 
					
						
						|  | new_xyz: sampled points position data, [B, C, S] | 
					
						
						|  | new_points_concat: sample points feature data, [B, D', S] | 
					
						
						|  | """ | 
					
						
						|  | xyz = xyz.permute(0, 2, 1).contiguous() | 
					
						
						|  | if points is not None: | 
					
						
						|  | points = points.permute(0, 2, 1).contiguous() | 
					
						
						|  |  | 
					
						
						|  | if self.group_all: | 
					
						
						|  | new_xyz, new_points = sample_and_group_all(xyz, points) | 
					
						
						|  | else: | 
					
						
						|  | new_xyz, new_points = sample_and_group(self.npoint, self.radius, self.nsample, xyz, points) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | new_points = new_points.permute(0, 3, 2, 1).contiguous() | 
					
						
						|  | for i, conv in enumerate(self.mlp_convs): | 
					
						
						|  | bn = self.mlp_bns[i] | 
					
						
						|  | new_points =  F.relu(bn(conv(new_points))) | 
					
						
						|  |  | 
					
						
						|  | new_points = torch.max(new_points, 2)[0] | 
					
						
						|  | new_xyz = new_xyz.permute(0, 2, 1).contiguous() | 
					
						
						|  | return new_xyz, new_points | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class PointNetSetAbstractionMsg(nn.Module): | 
					
						
						|  | def __init__(self, npoint, radius_list, nsample_list, in_channel, mlp_list): | 
					
						
						|  | super(PointNetSetAbstractionMsg, self).__init__() | 
					
						
						|  | self.npoint = npoint | 
					
						
						|  | self.radius_list = radius_list | 
					
						
						|  | self.nsample_list = nsample_list | 
					
						
						|  | self.conv_blocks = nn.ModuleList() | 
					
						
						|  | self.bn_blocks = nn.ModuleList() | 
					
						
						|  | for i in range(len(mlp_list)): | 
					
						
						|  | convs = nn.ModuleList() | 
					
						
						|  | bns = nn.ModuleList() | 
					
						
						|  | last_channel = in_channel + 3 | 
					
						
						|  | for out_channel in mlp_list[i]: | 
					
						
						|  | convs.append(nn.Conv2d(last_channel, out_channel, 1)) | 
					
						
						|  | bns.append(nn.BatchNorm2d(out_channel)) | 
					
						
						|  | last_channel = out_channel | 
					
						
						|  | self.conv_blocks.append(convs) | 
					
						
						|  | self.bn_blocks.append(bns) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, xyz, points): | 
					
						
						|  | """ | 
					
						
						|  | Input: | 
					
						
						|  | xyz: input points position data, [B, C, N] | 
					
						
						|  | points: input points data, [B, D, N] | 
					
						
						|  | Return: | 
					
						
						|  | new_xyz: sampled points position data, [B, C, S] | 
					
						
						|  | new_points_concat: sample points feature data, [B, D', S] | 
					
						
						|  | """ | 
					
						
						|  | xyz = xyz.permute(0, 2, 1).contiguous() | 
					
						
						|  | if points is not None: | 
					
						
						|  | points = points.permute(0, 2, 1).contiguous() | 
					
						
						|  |  | 
					
						
						|  | B, N, C = xyz.shape | 
					
						
						|  | S = self.npoint | 
					
						
						|  | new_xyz = index_points(xyz, farthest_point_sample(xyz, S)) | 
					
						
						|  | new_points_list = [] | 
					
						
						|  | for i, radius in enumerate(self.radius_list): | 
					
						
						|  | K = self.nsample_list[i] | 
					
						
						|  | group_idx = query_ball_point(radius, K, xyz, new_xyz) | 
					
						
						|  | grouped_xyz = index_points(xyz, group_idx) | 
					
						
						|  | grouped_xyz -= new_xyz.view(B, S, 1, C) | 
					
						
						|  | if points is not None: | 
					
						
						|  | grouped_points = index_points(points, group_idx) | 
					
						
						|  | grouped_points = torch.cat([grouped_points, grouped_xyz], dim=-1) | 
					
						
						|  | else: | 
					
						
						|  | grouped_points = grouped_xyz | 
					
						
						|  |  | 
					
						
						|  | grouped_points = grouped_points.permute(0, 3, 2, 1).contiguous() | 
					
						
						|  | for j in range(len(self.conv_blocks[i])): | 
					
						
						|  | conv = self.conv_blocks[i][j] | 
					
						
						|  | bn = self.bn_blocks[i][j] | 
					
						
						|  | grouped_points =  F.relu(bn(conv(grouped_points))) | 
					
						
						|  | new_points = torch.max(grouped_points, 2)[0] | 
					
						
						|  | new_points_list.append(new_points) | 
					
						
						|  |  | 
					
						
						|  | new_xyz = new_xyz.permute(0, 2, 1).contiguous() | 
					
						
						|  | new_points_concat = torch.cat(new_points_list, dim=1) | 
					
						
						|  | return new_xyz, new_points_concat | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class PointNetFeaturePropagation(nn.Module): | 
					
						
						|  | def __init__(self, in_channel, mlp): | 
					
						
						|  | super(PointNetFeaturePropagation, self).__init__() | 
					
						
						|  | self.mlp_convs = nn.ModuleList() | 
					
						
						|  | self.mlp_bns = nn.ModuleList() | 
					
						
						|  | last_channel = in_channel | 
					
						
						|  | for out_channel in mlp: | 
					
						
						|  | self.mlp_convs.append(nn.Conv1d(last_channel, out_channel, 1)) | 
					
						
						|  | self.mlp_bns.append(nn.BatchNorm1d(out_channel)) | 
					
						
						|  | last_channel = out_channel | 
					
						
						|  |  | 
					
						
						|  | def forward(self, xyz1, xyz2, points1, points2): | 
					
						
						|  | """ | 
					
						
						|  | Input: | 
					
						
						|  | xyz1: input points position data, [B, C, N] | 
					
						
						|  | xyz2: sampled input points position data, [B, C, S] | 
					
						
						|  | points1: input points data, [B, D, N] | 
					
						
						|  | points2: input points data, [B, D, S] | 
					
						
						|  | Return: | 
					
						
						|  | new_points: upsampled points data, [B, D', N] | 
					
						
						|  | """ | 
					
						
						|  | xyz1 = xyz1.permute(0, 2, 1).contiguous() | 
					
						
						|  | xyz2 = xyz2.permute(0, 2, 1).contiguous() | 
					
						
						|  |  | 
					
						
						|  | points2 = points2.permute(0, 2, 1).contiguous() | 
					
						
						|  | B, N, C = xyz1.shape | 
					
						
						|  | _, S, _ = xyz2.shape | 
					
						
						|  |  | 
					
						
						|  | if S == 1: | 
					
						
						|  | interpolated_points = points2.repeat(1, N, 1) | 
					
						
						|  | else: | 
					
						
						|  | dists = square_distance(xyz1, xyz2) | 
					
						
						|  | dists, idx = dists.sort(dim=-1) | 
					
						
						|  | dists, idx = dists[:, :, :3], idx[:, :, :3] | 
					
						
						|  |  | 
					
						
						|  | dist_recip = 1.0 / (dists + 1e-8) | 
					
						
						|  | norm = torch.sum(dist_recip, dim=2, keepdim=True) | 
					
						
						|  | weight = dist_recip / norm | 
					
						
						|  | interpolated_points = torch.sum(index_points(points2, idx) * weight.view(B, N, 3, 1), dim=2) | 
					
						
						|  |  | 
					
						
						|  | if points1 is not None: | 
					
						
						|  | points1 = points1.permute(0, 2, 1).contiguous() | 
					
						
						|  | new_points = torch.cat([points1, interpolated_points], dim=-1) | 
					
						
						|  | else: | 
					
						
						|  | new_points = interpolated_points | 
					
						
						|  |  | 
					
						
						|  | new_points = new_points.permute(0, 2, 1).contiguous() | 
					
						
						|  | for i, conv in enumerate(self.mlp_convs): | 
					
						
						|  | bn = self.mlp_bns[i] | 
					
						
						|  | new_points = F.relu(bn(conv(new_points))) | 
					
						
						|  | return new_points | 
					
						
						|  |  |