import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "winninghealth/WiNGPT-Babel" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True) def translate(text): prompt = f"<|im_start|>system\n中英互译下面的内容<|im_end|>\n<|im_start|>user\n{text}<|im_end|>\n<|im_start|>assistant\n" inputs = tokenizer([prompt], return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=512, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) translated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) return translated_text def custom_api(text_list, source_lang, target_lang): # 假设你的模型只支持中英互译 if source_lang == "zh-CN" and target_lang == "en": translated_list = [translate(text) for text in text_list] elif source_lang == "en" and target_lang == "zh-CN": translated_list = [translate(text) for text in text_list] else: return {"error": "Unsupported language pair"} return {"translations": [{"detected_source_lang": source_lang, "text": translated_text} for translated_text in translated_list]} # 创建 Gradio 接口 iface = gr.Interface( fn=custom_api, inputs=[ gr.Textbox(lines=5, label="输入文本列表 (支持中英互译)", placeholder='["Hello", "World"]'), gr.Textbox(label="源语言", placeholder="zh-CN"), gr.Textbox(label="目标语言", placeholder="en") ], outputs=gr.JSON(label="翻译结果"), title="WiNGPT-Babel 翻译 Demo", description="基于 WiNGPT-Babel 模型的翻译演示。支持中英互译。", ) iface.launch()