File size: 4,708 Bytes
59812f5
141ba59
c86c2f3
 
 
d2d3f64
c86c2f3
141ba59
c86c2f3
d38ce92
 
4522cd0
 
59812f5
4522cd0
141ba59
3992910
4522cd0
3992910
4522cd0
3992910
4522cd0
 
e6dd388
 
 
 
3992910
 
e6dd388
 
c86c2f3
09b3f75
c86c2f3
1827259
141ba59
d38ce92
141ba59
 
 
c86c2f3
 
d2d3f64
4522cd0
c86c2f3
6a15314
9b30274
141ba59
 
 
 
 
 
d38ce92
 
 
141ba59
54995d2
 
6bc8e25
54995d2
141ba59
 
 
54995d2
141ba59
 
 
 
 
 
 
 
 
 
 
c86c2f3
141ba59
 
 
 
c86c2f3
 
141ba59
 
 
b4ca5ac
141ba59
09b3f75
c86c2f3
 
 
 
141ba59
 
09b3f75
c86c2f3
4522cd0
c86c2f3
141ba59
 
 
09b3f75
c86c2f3
 
 
141ba59
 
 
09b3f75
c86c2f3
4522cd0
c86c2f3
 
141ba59
 
 
 
 
 
 
 
 
 
 
3992910
 
 
141ba59
1657fc1
6a15314
141ba59
1827259
e18ba1b
141ba59
 
 
e6dd388
 
89f9579
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import os
from threading import Thread
from typing import Iterator

import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer

from run_demo import ZeroShotChatTemplate

MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

DESCRIPTION = """\
# Reasoning Paths Optimization: Learning to Reason and Explore From Diverse Paths

This Space demonstrates the reasoning paths optimization (RPO) framework with a Llama 3 model with 8B parameters fine-tuned for math reasoning. Feel free to play with it, or duplicate to run generations without a queue!

🔎 For more details about the RPO training framework, check out the [paper](https://arxiv.org/abs/2410.10858) or [code](https://github.com/DAMO-NLP-SG/reasoning-paths-optimization).
"""

LICENSE = """
<p/>

---
As a derivate work of [Llama-3-8b-chat](https://huggingface.co/meta-llama/Meta-Llama-3-8B) by Meta,
this demo is governed by the original [license](https://huggingface.co/meta-llama/Meta-Llama-3-8B/blob/main/LICENSE) and [acceptable use policy](https://huggingface.co/meta-llama/Meta-Llama-3-8B/blob/main/USE_POLICY.md).
"""

if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"


if torch.cuda.is_available():
    model_id = "chiayewken/llama3-8b-gsm8k-rpo"
    model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
    tokenizer = AutoTokenizer.from_pretrained(model_id)
    tokenizer.use_default_system_prompt = False


@spaces.GPU
def generate(
    message: str,
    chat_history: list[dict],
    system_prompt: str = "",
    max_new_tokens: int = 1024,
    temperature: float = 0.6,
    top_p: float = 0.9,
    top_k: int = 50,
    repetition_penalty: float = 1.2,
) -> Iterator[str]:
    demo = ZeroShotChatTemplate()
    prompt = demo.make_prompt(message)
    input_ids = tokenizer(prompt, return_tensors="pt").input_ids

    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
        gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
    input_ids = input_ids.to(model.device)

    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        {"input_ids": input_ids},
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        num_beams=1,
        repetition_penalty=repetition_penalty,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)
        yield "".join(outputs)


chat_interface = gr.ChatInterface(
    fn=generate,
    additional_inputs=[
        gr.Textbox(label="System prompt", lines=6),
        gr.Slider(
            label="Max new tokens",
            minimum=1,
            maximum=MAX_MAX_NEW_TOKENS,
            step=1,
            value=DEFAULT_MAX_NEW_TOKENS,
        ),
        gr.Slider(
            label="Temperature",
            minimum=0.1,
            maximum=4.0,
            step=0.1,
            value=0.6,
        ),
        gr.Slider(
            label="Top-p (nucleus sampling)",
            minimum=0.05,
            maximum=1.0,
            step=0.05,
            value=0.9,
        ),
        gr.Slider(
            label="Top-k",
            minimum=1,
            maximum=1000,
            step=1,
            value=50,
        ),
        gr.Slider(
            label="Repetition penalty",
            minimum=1.0,
            maximum=2.0,
            step=0.05,
            value=1.2,
        ),
    ],
    stop_btn=None,
    examples=[
        ["Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?"],
        ["Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How many clips did Natalia sell altogether in April and May?"],
        ["Weng earns $12 an hour for babysitting. Yesterday, she just did 50 minutes of babysitting. How much did she earn?"],
    ],
    cache_examples=False,
    type="messages",
)

with gr.Blocks(css_paths="style.css", fill_height=True) as demo:
    gr.Markdown(DESCRIPTION)
    gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
    chat_interface.render()
    gr.Markdown(LICENSE)

if __name__ == "__main__":
    demo.queue(max_size=20).launch()