Spaces:
Runtime error
Runtime error
Upload model.py
Browse files
model.py
ADDED
|
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding: utf-8
|
| 2 |
+
# Author:WangTianRui
|
| 3 |
+
# Date :2020/11/3 16:49
|
| 4 |
+
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
import torch
|
| 7 |
+
from utils.conv_stft import *
|
| 8 |
+
from utils.complexnn import *
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class DCCRN(nn.Module):
|
| 12 |
+
def __init__(self,
|
| 13 |
+
rnn_layer=2, rnn_hidden=256,
|
| 14 |
+
win_len=400, hop_len=100, fft_len=512, win_type='hann',
|
| 15 |
+
use_clstm=True, use_cbn=False, masking_mode='E',
|
| 16 |
+
kernel_size=5, kernel_num=(32, 64, 128, 256, 256, 256)
|
| 17 |
+
):
|
| 18 |
+
super(DCCRN, self).__init__()
|
| 19 |
+
self.rnn_layer = rnn_layer
|
| 20 |
+
self.rnn_hidden = rnn_hidden
|
| 21 |
+
|
| 22 |
+
self.win_len = win_len
|
| 23 |
+
self.hop_len = hop_len
|
| 24 |
+
self.fft_len = fft_len
|
| 25 |
+
self.win_type = win_type
|
| 26 |
+
|
| 27 |
+
self.use_clstm = use_clstm
|
| 28 |
+
self.use_cbn = use_cbn
|
| 29 |
+
self.masking_mode = masking_mode
|
| 30 |
+
|
| 31 |
+
self.kernel_size = kernel_size
|
| 32 |
+
self.kernel_num = (2,) + kernel_num
|
| 33 |
+
|
| 34 |
+
self.stft = ConvSTFT(self.win_len, self.hop_len, self.fft_len, self.win_type, 'complex', fix=True)
|
| 35 |
+
self.istft = ConviSTFT(self.win_len, self.hop_len, self.fft_len, self.win_type, 'complex', fix=True)
|
| 36 |
+
|
| 37 |
+
self.encoder = nn.ModuleList()
|
| 38 |
+
self.decoder = nn.ModuleList()
|
| 39 |
+
|
| 40 |
+
for idx in range(len(self.kernel_num) - 1):
|
| 41 |
+
self.encoder.append(
|
| 42 |
+
nn.Sequential(
|
| 43 |
+
ComplexConv2d(
|
| 44 |
+
self.kernel_num[idx],
|
| 45 |
+
self.kernel_num[idx + 1],
|
| 46 |
+
kernel_size=(self.kernel_size, 2),
|
| 47 |
+
stride=(2, 1),
|
| 48 |
+
padding=(2, 1)
|
| 49 |
+
),
|
| 50 |
+
nn.BatchNorm2d(self.kernel_num[idx + 1]) if not use_cbn else ComplexBatchNorm(
|
| 51 |
+
self.kernel_num[idx + 1]),
|
| 52 |
+
nn.PReLU()
|
| 53 |
+
)
|
| 54 |
+
)
|
| 55 |
+
hidden_dim = self.fft_len // (2 ** (len(self.kernel_num)))
|
| 56 |
+
|
| 57 |
+
if self.use_clstm:
|
| 58 |
+
rnns = []
|
| 59 |
+
for idx in range(rnn_layer):
|
| 60 |
+
rnns.append(
|
| 61 |
+
NavieComplexLSTM(
|
| 62 |
+
input_size=hidden_dim * self.kernel_num[-1] if idx == 0 else self.rnn_hidden,
|
| 63 |
+
hidden_size=self.rnn_hidden,
|
| 64 |
+
batch_first=False,
|
| 65 |
+
projection_dim=hidden_dim * self.kernel_num[-1] if idx == rnn_layer - 1 else None
|
| 66 |
+
)
|
| 67 |
+
)
|
| 68 |
+
self.enhance = nn.Sequential(*rnns)
|
| 69 |
+
else:
|
| 70 |
+
self.enhance = nn.LSTM(
|
| 71 |
+
input_size=hidden_dim * self.kernel_num[-1],
|
| 72 |
+
hidden_size=self.rnn_hidden,
|
| 73 |
+
num_layers=2,
|
| 74 |
+
dropout=0.0,
|
| 75 |
+
batch_first=False
|
| 76 |
+
)
|
| 77 |
+
self.transform = nn.Linear(self.rnn_hidden, hidden_dim * self.kernel_num[-1])
|
| 78 |
+
for idx in range(len(self.kernel_num) - 1, 0, -1):
|
| 79 |
+
if idx != 1:
|
| 80 |
+
self.decoder.append(
|
| 81 |
+
nn.Sequential(
|
| 82 |
+
ComplexConvTranspose2d(
|
| 83 |
+
self.kernel_num[idx] * 2,
|
| 84 |
+
self.kernel_num[idx - 1],
|
| 85 |
+
kernel_size=(self.kernel_size, 2),
|
| 86 |
+
stride=(2, 1),
|
| 87 |
+
padding=(2, 0),
|
| 88 |
+
output_padding=(1, 0)
|
| 89 |
+
),
|
| 90 |
+
nn.BatchNorm2d(self.kernel_num[idx - 1]) if not use_cbn else ComplexBatchNorm(
|
| 91 |
+
self.kernel_num[idx - 1]),
|
| 92 |
+
nn.PReLU()
|
| 93 |
+
)
|
| 94 |
+
)
|
| 95 |
+
else:
|
| 96 |
+
self.decoder.append(
|
| 97 |
+
nn.Sequential(
|
| 98 |
+
ComplexConvTranspose2d(
|
| 99 |
+
self.kernel_num[idx] * 2,
|
| 100 |
+
self.kernel_num[idx - 1],
|
| 101 |
+
kernel_size=(self.kernel_size, 2),
|
| 102 |
+
stride=(2, 1),
|
| 103 |
+
padding=(2, 0),
|
| 104 |
+
output_padding=(1, 0)
|
| 105 |
+
)
|
| 106 |
+
)
|
| 107 |
+
)
|
| 108 |
+
if isinstance(self.enhance, nn.LSTM):
|
| 109 |
+
self.enhance.flatten_parameters()
|
| 110 |
+
|
| 111 |
+
def forward(self, x):
|
| 112 |
+
stft = self.stft(x)
|
| 113 |
+
# print("stft:", stft.size())
|
| 114 |
+
real = stft[:, :self.fft_len // 2 + 1]
|
| 115 |
+
imag = stft[:, self.fft_len // 2 + 1:]
|
| 116 |
+
# print("real imag:", real.size(), imag.size())
|
| 117 |
+
spec_mags = torch.sqrt(real ** 2 + imag ** 2 + 1e-8)
|
| 118 |
+
spec_phase = torch.atan2(imag, real)
|
| 119 |
+
spec_complex = torch.stack([real, imag], dim=1)[:, :, 1:] # B,2,256
|
| 120 |
+
# print("spec", spec_mags.size(), spec_phase.size(), spec_complex.size())
|
| 121 |
+
|
| 122 |
+
out = spec_complex
|
| 123 |
+
encoder_out = []
|
| 124 |
+
for idx, encoder in enumerate(self.encoder):
|
| 125 |
+
out = encoder(out)
|
| 126 |
+
# print("encoder out:", out.size())
|
| 127 |
+
encoder_out.append(out)
|
| 128 |
+
B, C, D, T = out.size()
|
| 129 |
+
out = out.permute(3, 0, 1, 2)
|
| 130 |
+
if self.use_clstm:
|
| 131 |
+
r_rnn_in = out[:, :, :C // 2]
|
| 132 |
+
i_rnn_in = out[:, :, C // 2:]
|
| 133 |
+
r_rnn_in = torch.reshape(r_rnn_in, [T, B, C // 2 * D])
|
| 134 |
+
i_rnn_in = torch.reshape(i_rnn_in, [T, B, C // 2 * D])
|
| 135 |
+
|
| 136 |
+
r_rnn_in, i_rnn_in = self.enhance([r_rnn_in, i_rnn_in])
|
| 137 |
+
|
| 138 |
+
r_rnn_in = torch.reshape(r_rnn_in, [T, B, C // 2, D])
|
| 139 |
+
i_rnn_in = torch.reshape(i_rnn_in, [T, B, C // 2, D])
|
| 140 |
+
out = torch.cat([r_rnn_in, i_rnn_in], 2)
|
| 141 |
+
else:
|
| 142 |
+
out = torch.reshape(out, [T, B, C * D])
|
| 143 |
+
out, _ = self.enhance(out)
|
| 144 |
+
out = self.transform(out)
|
| 145 |
+
out = torch.reshape(out, [T, B, C, D])
|
| 146 |
+
out = out.permute(1, 2, 3, 0)
|
| 147 |
+
for idx in range(len(self.decoder)):
|
| 148 |
+
out = complex_cat([out, encoder_out[-1 - idx]], 1)
|
| 149 |
+
out = self.decoder[idx](out)
|
| 150 |
+
out = out[..., 1:]
|
| 151 |
+
mask_real = out[:, 0]
|
| 152 |
+
mask_imag = out[:, 1]
|
| 153 |
+
mask_real = F.pad(mask_real, [0, 0, 1, 0])
|
| 154 |
+
mask_imag = F.pad(mask_imag, [0, 0, 1, 0])
|
| 155 |
+
if self.masking_mode == 'E':
|
| 156 |
+
mask_mags = (mask_real ** 2 + mask_imag ** 2) ** 0.5
|
| 157 |
+
real_phase = mask_real / (mask_mags + 1e-8)
|
| 158 |
+
imag_phase = mask_imag / (mask_mags + 1e-8)
|
| 159 |
+
mask_phase = torch.atan2(
|
| 160 |
+
imag_phase,
|
| 161 |
+
real_phase
|
| 162 |
+
)
|
| 163 |
+
mask_mags = torch.tanh(mask_mags)
|
| 164 |
+
est_mags = mask_mags * spec_mags
|
| 165 |
+
est_phase = spec_phase + mask_phase
|
| 166 |
+
real = est_mags * torch.cos(est_phase)
|
| 167 |
+
imag = est_mags * torch.sin(est_phase)
|
| 168 |
+
elif self.masking_mode == 'C':
|
| 169 |
+
real = real * mask_real - imag * mask_imag
|
| 170 |
+
imag = real * mask_imag + imag * mask_real
|
| 171 |
+
elif self.masking_mode == 'R':
|
| 172 |
+
real = real * mask_real
|
| 173 |
+
imag = imag * mask_imag
|
| 174 |
+
|
| 175 |
+
out_spec = torch.cat([real, imag], 1)
|
| 176 |
+
out_wav = self.istft(out_spec)
|
| 177 |
+
out_wav = torch.squeeze(out_wav, 1)
|
| 178 |
+
out_wav = out_wav.clamp_(-1, 1)
|
| 179 |
+
return out_wav
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
def l2_norm(s1, s2):
|
| 183 |
+
norm = torch.sum(s1 * s2, -1, keepdim=True)
|
| 184 |
+
return norm
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
def si_snr(s1, s2, eps=1e-8):
|
| 188 |
+
s1_s2_norm = l2_norm(s1, s2)
|
| 189 |
+
s2_s2_norm = l2_norm(s2, s2)
|
| 190 |
+
s_target = s1_s2_norm / (s2_s2_norm + eps) * s2
|
| 191 |
+
e_nosie = s1 - s_target
|
| 192 |
+
target_norm = l2_norm(s_target, s_target)
|
| 193 |
+
noise_norm = l2_norm(e_nosie, e_nosie)
|
| 194 |
+
snr = 10 * torch.log10(target_norm / (noise_norm + eps) + eps)
|
| 195 |
+
return torch.mean(snr)
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
def loss(inputs, label):
|
| 199 |
+
return -(si_snr(inputs, label))
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
if __name__ == '__main__':
|
| 203 |
+
test_model = DCCRN(rnn_hidden=256, masking_mode='E', use_clstm=True, kernel_num=(32, 64, 128, 256, 256, 256))
|
| 204 |
+
|
| 205 |
+
model_test_timer(test_model, (1, 16000 * 30))
|