Ada312 commited on
Commit
10d809f
·
verified ·
1 Parent(s): f754a38

Upload model.py

Browse files
Files changed (1) hide show
  1. model.py +205 -0
model.py ADDED
@@ -0,0 +1,205 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf-8
2
+ # Author:WangTianRui
3
+ # Date :2020/11/3 16:49
4
+
5
+ import torch.nn as nn
6
+ import torch
7
+ from utils.conv_stft import *
8
+ from utils.complexnn import *
9
+
10
+
11
+ class DCCRN(nn.Module):
12
+ def __init__(self,
13
+ rnn_layer=2, rnn_hidden=256,
14
+ win_len=400, hop_len=100, fft_len=512, win_type='hann',
15
+ use_clstm=True, use_cbn=False, masking_mode='E',
16
+ kernel_size=5, kernel_num=(32, 64, 128, 256, 256, 256)
17
+ ):
18
+ super(DCCRN, self).__init__()
19
+ self.rnn_layer = rnn_layer
20
+ self.rnn_hidden = rnn_hidden
21
+
22
+ self.win_len = win_len
23
+ self.hop_len = hop_len
24
+ self.fft_len = fft_len
25
+ self.win_type = win_type
26
+
27
+ self.use_clstm = use_clstm
28
+ self.use_cbn = use_cbn
29
+ self.masking_mode = masking_mode
30
+
31
+ self.kernel_size = kernel_size
32
+ self.kernel_num = (2,) + kernel_num
33
+
34
+ self.stft = ConvSTFT(self.win_len, self.hop_len, self.fft_len, self.win_type, 'complex', fix=True)
35
+ self.istft = ConviSTFT(self.win_len, self.hop_len, self.fft_len, self.win_type, 'complex', fix=True)
36
+
37
+ self.encoder = nn.ModuleList()
38
+ self.decoder = nn.ModuleList()
39
+
40
+ for idx in range(len(self.kernel_num) - 1):
41
+ self.encoder.append(
42
+ nn.Sequential(
43
+ ComplexConv2d(
44
+ self.kernel_num[idx],
45
+ self.kernel_num[idx + 1],
46
+ kernel_size=(self.kernel_size, 2),
47
+ stride=(2, 1),
48
+ padding=(2, 1)
49
+ ),
50
+ nn.BatchNorm2d(self.kernel_num[idx + 1]) if not use_cbn else ComplexBatchNorm(
51
+ self.kernel_num[idx + 1]),
52
+ nn.PReLU()
53
+ )
54
+ )
55
+ hidden_dim = self.fft_len // (2 ** (len(self.kernel_num)))
56
+
57
+ if self.use_clstm:
58
+ rnns = []
59
+ for idx in range(rnn_layer):
60
+ rnns.append(
61
+ NavieComplexLSTM(
62
+ input_size=hidden_dim * self.kernel_num[-1] if idx == 0 else self.rnn_hidden,
63
+ hidden_size=self.rnn_hidden,
64
+ batch_first=False,
65
+ projection_dim=hidden_dim * self.kernel_num[-1] if idx == rnn_layer - 1 else None
66
+ )
67
+ )
68
+ self.enhance = nn.Sequential(*rnns)
69
+ else:
70
+ self.enhance = nn.LSTM(
71
+ input_size=hidden_dim * self.kernel_num[-1],
72
+ hidden_size=self.rnn_hidden,
73
+ num_layers=2,
74
+ dropout=0.0,
75
+ batch_first=False
76
+ )
77
+ self.transform = nn.Linear(self.rnn_hidden, hidden_dim * self.kernel_num[-1])
78
+ for idx in range(len(self.kernel_num) - 1, 0, -1):
79
+ if idx != 1:
80
+ self.decoder.append(
81
+ nn.Sequential(
82
+ ComplexConvTranspose2d(
83
+ self.kernel_num[idx] * 2,
84
+ self.kernel_num[idx - 1],
85
+ kernel_size=(self.kernel_size, 2),
86
+ stride=(2, 1),
87
+ padding=(2, 0),
88
+ output_padding=(1, 0)
89
+ ),
90
+ nn.BatchNorm2d(self.kernel_num[idx - 1]) if not use_cbn else ComplexBatchNorm(
91
+ self.kernel_num[idx - 1]),
92
+ nn.PReLU()
93
+ )
94
+ )
95
+ else:
96
+ self.decoder.append(
97
+ nn.Sequential(
98
+ ComplexConvTranspose2d(
99
+ self.kernel_num[idx] * 2,
100
+ self.kernel_num[idx - 1],
101
+ kernel_size=(self.kernel_size, 2),
102
+ stride=(2, 1),
103
+ padding=(2, 0),
104
+ output_padding=(1, 0)
105
+ )
106
+ )
107
+ )
108
+ if isinstance(self.enhance, nn.LSTM):
109
+ self.enhance.flatten_parameters()
110
+
111
+ def forward(self, x):
112
+ stft = self.stft(x)
113
+ # print("stft:", stft.size())
114
+ real = stft[:, :self.fft_len // 2 + 1]
115
+ imag = stft[:, self.fft_len // 2 + 1:]
116
+ # print("real imag:", real.size(), imag.size())
117
+ spec_mags = torch.sqrt(real ** 2 + imag ** 2 + 1e-8)
118
+ spec_phase = torch.atan2(imag, real)
119
+ spec_complex = torch.stack([real, imag], dim=1)[:, :, 1:] # B,2,256
120
+ # print("spec", spec_mags.size(), spec_phase.size(), spec_complex.size())
121
+
122
+ out = spec_complex
123
+ encoder_out = []
124
+ for idx, encoder in enumerate(self.encoder):
125
+ out = encoder(out)
126
+ # print("encoder out:", out.size())
127
+ encoder_out.append(out)
128
+ B, C, D, T = out.size()
129
+ out = out.permute(3, 0, 1, 2)
130
+ if self.use_clstm:
131
+ r_rnn_in = out[:, :, :C // 2]
132
+ i_rnn_in = out[:, :, C // 2:]
133
+ r_rnn_in = torch.reshape(r_rnn_in, [T, B, C // 2 * D])
134
+ i_rnn_in = torch.reshape(i_rnn_in, [T, B, C // 2 * D])
135
+
136
+ r_rnn_in, i_rnn_in = self.enhance([r_rnn_in, i_rnn_in])
137
+
138
+ r_rnn_in = torch.reshape(r_rnn_in, [T, B, C // 2, D])
139
+ i_rnn_in = torch.reshape(i_rnn_in, [T, B, C // 2, D])
140
+ out = torch.cat([r_rnn_in, i_rnn_in], 2)
141
+ else:
142
+ out = torch.reshape(out, [T, B, C * D])
143
+ out, _ = self.enhance(out)
144
+ out = self.transform(out)
145
+ out = torch.reshape(out, [T, B, C, D])
146
+ out = out.permute(1, 2, 3, 0)
147
+ for idx in range(len(self.decoder)):
148
+ out = complex_cat([out, encoder_out[-1 - idx]], 1)
149
+ out = self.decoder[idx](out)
150
+ out = out[..., 1:]
151
+ mask_real = out[:, 0]
152
+ mask_imag = out[:, 1]
153
+ mask_real = F.pad(mask_real, [0, 0, 1, 0])
154
+ mask_imag = F.pad(mask_imag, [0, 0, 1, 0])
155
+ if self.masking_mode == 'E':
156
+ mask_mags = (mask_real ** 2 + mask_imag ** 2) ** 0.5
157
+ real_phase = mask_real / (mask_mags + 1e-8)
158
+ imag_phase = mask_imag / (mask_mags + 1e-8)
159
+ mask_phase = torch.atan2(
160
+ imag_phase,
161
+ real_phase
162
+ )
163
+ mask_mags = torch.tanh(mask_mags)
164
+ est_mags = mask_mags * spec_mags
165
+ est_phase = spec_phase + mask_phase
166
+ real = est_mags * torch.cos(est_phase)
167
+ imag = est_mags * torch.sin(est_phase)
168
+ elif self.masking_mode == 'C':
169
+ real = real * mask_real - imag * mask_imag
170
+ imag = real * mask_imag + imag * mask_real
171
+ elif self.masking_mode == 'R':
172
+ real = real * mask_real
173
+ imag = imag * mask_imag
174
+
175
+ out_spec = torch.cat([real, imag], 1)
176
+ out_wav = self.istft(out_spec)
177
+ out_wav = torch.squeeze(out_wav, 1)
178
+ out_wav = out_wav.clamp_(-1, 1)
179
+ return out_wav
180
+
181
+
182
+ def l2_norm(s1, s2):
183
+ norm = torch.sum(s1 * s2, -1, keepdim=True)
184
+ return norm
185
+
186
+
187
+ def si_snr(s1, s2, eps=1e-8):
188
+ s1_s2_norm = l2_norm(s1, s2)
189
+ s2_s2_norm = l2_norm(s2, s2)
190
+ s_target = s1_s2_norm / (s2_s2_norm + eps) * s2
191
+ e_nosie = s1 - s_target
192
+ target_norm = l2_norm(s_target, s_target)
193
+ noise_norm = l2_norm(e_nosie, e_nosie)
194
+ snr = 10 * torch.log10(target_norm / (noise_norm + eps) + eps)
195
+ return torch.mean(snr)
196
+
197
+
198
+ def loss(inputs, label):
199
+ return -(si_snr(inputs, label))
200
+
201
+
202
+ if __name__ == '__main__':
203
+ test_model = DCCRN(rnn_hidden=256, masking_mode='E', use_clstm=True, kernel_num=(32, 64, 128, 256, 256, 256))
204
+
205
+ model_test_timer(test_model, (1, 16000 * 30))