File size: 1,677 Bytes
61c6e8a
 
 
 
 
 
 
 
 
 
 
 
 
 
656229d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
title: Fillersark
emoji: πŸ“‰
colorFrom: pink
colorTo: blue
sdk: gradio
sdk_version: 5.28.0
app_file: app.py
pinned: false
license: other
short_description: filler
---

Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference

# πŸŽ™οΈ CrisperWhisper Speech-to-Text

This Hugging Face Space provides a speech-to-text transcription service powered by the [nyrahealth/CrisperWhisper](https://huggingface.co/nyrahealth/CrisperWhisper) model. Upload audio files and get transcribed text with word-level timestamps.

## Features

- Transcribe audio files to text with word-level timestamps
- Support for multiple audio formats (MP3, WAV, M4A, OGG, FLAC)
- Up to 30MB file size support
- Simple web interface using Gradio
- REST API endpoint for programmatic access

## How to Use

1. Upload an audio file using the interface
2. Click "Transcribe"
3. View both the plain text transcription and detailed JSON output with timestamps

## API Usage

You can also use this Space programmatically via the REST API:

```python
import requests

url = "https://your-space-name.hf.space/api/predict"
files = {'audio_input': open('/path/to/your-audio-file.mp3', 'rb')}

response = requests.post(url, files=files)
print(response.json())
```

## Model Details

This app uses the [nyrahealth/CrisperWhisper](https://huggingface.co/nyrahealth/CrisperWhisper) model, which is optimized for high-quality speech transcription with timestamp information.

## System Requirements

For optimal performance, this Space should be run with:
- GPU acceleration
- At least 8GB RAM

---

tags:
- speech-to-text
- transcription
- whisper
- gradio
- audio-processing