chandansocial7 commited on
Commit
29346e4
·
verified ·
1 Parent(s): 61aa69f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +494 -493
app.py CHANGED
@@ -1,493 +1,494 @@
1
- #!/usr/bin/env python
2
- """
3
- This script runs a Gradio App for the Open-Sora model.
4
-
5
- Usage:
6
- python demo.py <config-path>
7
- """
8
-
9
- import argparse
10
- import importlib
11
- import os
12
- import subprocess
13
- import sys
14
- import re
15
- import json
16
- import math
17
-
18
- import spaces
19
- import torch
20
-
21
- import gradio as gr
22
-
23
-
24
- MODEL_TYPES = ["v1.1"]
25
- CONFIG_MAP = {
26
- "v1.1-stage2": "configs/opensora-v1-1/inference/sample-ref.py",
27
- "v1.1-stage3": "configs/opensora-v1-1/inference/sample-ref.py",
28
- }
29
- HF_STDIT_MAP = {
30
- "v1.1-stage2": "hpcai-tech/OpenSora-STDiT-v2-stage2",
31
- "v1.1-stage3": "hpcai-tech/OpenSora-STDiT-v2-stage3",
32
- }
33
- RESOLUTION_MAP = {
34
- "144p": (256, 144),
35
- "240p": (426, 240),
36
- "360p": (480, 360),
37
- "480p": (858, 480),
38
- "720p": (1280, 720),
39
- "1080p": (1920, 1080)
40
- }
41
-
42
-
43
- # ============================
44
- # Utils
45
- # ============================
46
- def collect_references_batch(reference_paths, vae, image_size):
47
- from opensora.datasets.utils import read_from_path
48
-
49
- refs_x = []
50
- for reference_path in reference_paths:
51
- if reference_path is None:
52
- refs_x.append([])
53
- continue
54
- ref_path = reference_path.split(";")
55
- ref = []
56
- for r_path in ref_path:
57
- r = read_from_path(r_path, image_size, transform_name="resize_crop")
58
- r_x = vae.encode(r.unsqueeze(0).to(vae.device, vae.dtype))
59
- r_x = r_x.squeeze(0)
60
- ref.append(r_x)
61
- refs_x.append(ref)
62
- # refs_x: [batch, ref_num, C, T, H, W]
63
- return refs_x
64
-
65
-
66
- def process_mask_strategy(mask_strategy):
67
- mask_batch = []
68
- mask_strategy = mask_strategy.split(";")
69
- for mask in mask_strategy:
70
- mask_group = mask.split(",")
71
- assert len(mask_group) >= 1 and len(mask_group) <= 6, f"Invalid mask strategy: {mask}"
72
- if len(mask_group) == 1:
73
- mask_group.extend(["0", "0", "0", "1", "0"])
74
- elif len(mask_group) == 2:
75
- mask_group.extend(["0", "0", "1", "0"])
76
- elif len(mask_group) == 3:
77
- mask_group.extend(["0", "1", "0"])
78
- elif len(mask_group) == 4:
79
- mask_group.extend(["1", "0"])
80
- elif len(mask_group) == 5:
81
- mask_group.append("0")
82
- mask_batch.append(mask_group)
83
- return mask_batch
84
-
85
-
86
- def apply_mask_strategy(z, refs_x, mask_strategys, loop_i):
87
- masks = []
88
- for i, mask_strategy in enumerate(mask_strategys):
89
- mask = torch.ones(z.shape[2], dtype=torch.float, device=z.device)
90
- if mask_strategy is None:
91
- masks.append(mask)
92
- continue
93
- mask_strategy = process_mask_strategy(mask_strategy)
94
- for mst in mask_strategy:
95
- loop_id, m_id, m_ref_start, m_target_start, m_length, edit_ratio = mst
96
- loop_id = int(loop_id)
97
- if loop_id != loop_i:
98
- continue
99
- m_id = int(m_id)
100
- m_ref_start = int(m_ref_start)
101
- m_length = int(m_length)
102
- m_target_start = int(m_target_start)
103
- edit_ratio = float(edit_ratio)
104
- ref = refs_x[i][m_id] # [C, T, H, W]
105
- if m_ref_start < 0:
106
- m_ref_start = ref.shape[1] + m_ref_start
107
- if m_target_start < 0:
108
- # z: [B, C, T, H, W]
109
- m_target_start = z.shape[2] + m_target_start
110
- z[i, :, m_target_start : m_target_start + m_length] = ref[:, m_ref_start : m_ref_start + m_length]
111
- mask[m_target_start : m_target_start + m_length] = edit_ratio
112
- masks.append(mask)
113
- masks = torch.stack(masks)
114
- return masks
115
-
116
-
117
- def process_prompts(prompts, num_loop):
118
- from opensora.models.text_encoder.t5 import text_preprocessing
119
-
120
- ret_prompts = []
121
- for prompt in prompts:
122
- if prompt.startswith("|0|"):
123
- prompt_list = prompt.split("|")[1:]
124
- text_list = []
125
- for i in range(0, len(prompt_list), 2):
126
- start_loop = int(prompt_list[i])
127
- text = prompt_list[i + 1]
128
- text = text_preprocessing(text)
129
- end_loop = int(prompt_list[i + 2]) if i + 2 < len(prompt_list) else num_loop
130
- text_list.extend([text] * (end_loop - start_loop))
131
- assert len(text_list) == num_loop, f"Prompt loop mismatch: {len(text_list)} != {num_loop}"
132
- ret_prompts.append(text_list)
133
- else:
134
- prompt = text_preprocessing(prompt)
135
- ret_prompts.append([prompt] * num_loop)
136
- return ret_prompts
137
-
138
-
139
- def extract_json_from_prompts(prompts):
140
- additional_infos = []
141
- ret_prompts = []
142
- for prompt in prompts:
143
- parts = re.split(r"(?=[{\[])", prompt)
144
- assert len(parts) <= 2, f"Invalid prompt: {prompt}"
145
- ret_prompts.append(parts[0])
146
- if len(parts) == 1:
147
- additional_infos.append({})
148
- else:
149
- additional_infos.append(json.loads(parts[1]))
150
- return ret_prompts, additional_infos
151
-
152
-
153
- # ============================
154
- # Runtime Environment
155
- # ============================
156
- def install_dependencies(enable_optimization=False):
157
- """
158
- Install the required dependencies for the demo if they are not already installed.
159
- """
160
-
161
- def _is_package_available(name) -> bool:
162
- try:
163
- importlib.import_module(name)
164
- return True
165
- except (ImportError, ModuleNotFoundError):
166
- return False
167
-
168
- # flash attention is needed no matter optimization is enabled or not
169
- # because Hugging Face transformers detects flash_attn is a dependency in STDiT
170
- # thus, we need to install it no matter what
171
- if not _is_package_available("flash_attn"):
172
- subprocess.run(
173
- f"{sys.executable} -m pip install flash-attn --no-build-isolation",
174
- env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
175
- shell=True,
176
- )
177
-
178
- if enable_optimization:
179
- # install apex for fused layernorm
180
- if not _is_package_available("apex"):
181
- subprocess.run(
182
- f'{sys.executable} -m pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --config-settings "--build-option=--cpp_ext" --config-settings "--build-option=--cuda_ext" git+https://github.com/NVIDIA/apex.git',
183
- shell=True,
184
- )
185
-
186
- # install ninja
187
- if not _is_package_available("ninja"):
188
- subprocess.run(f"{sys.executable} -m pip install ninja", shell=True)
189
-
190
- # install xformers
191
- if not _is_package_available("xformers"):
192
- subprocess.run(
193
- f"{sys.executable} -m pip install -v -U git+https://github.com/facebookresearch/xformers.git@main#egg=xformers",
194
- shell=True,
195
- )
196
-
197
-
198
- # ============================
199
- # Model-related
200
- # ============================
201
- def read_config(config_path):
202
- """
203
- Read the configuration file.
204
- """
205
- from mmengine.config import Config
206
-
207
- return Config.fromfile(config_path)
208
-
209
-
210
- def build_models(model_type, config, enable_optimization=False):
211
- """
212
- Build the models for the given model type and configuration.
213
- """
214
- # build vae
215
- from opensora.registry import MODELS, build_module
216
-
217
- vae = build_module(config.vae, MODELS).cuda()
218
-
219
- # build text encoder
220
- text_encoder = build_module(config.text_encoder, MODELS) # T5 must be fp32
221
- text_encoder.t5.model = text_encoder.t5.model.cuda()
222
-
223
- # build stdit
224
- # we load model from HuggingFace directly so that we don't need to
225
- # handle model download logic in HuggingFace Space
226
- from transformers import AutoModel
227
-
228
- stdit = AutoModel.from_pretrained(
229
- HF_STDIT_MAP[model_type],
230
- enable_flash_attn=enable_optimization,
231
- trust_remote_code=True,
232
- ).cuda()
233
-
234
- # build scheduler
235
- from opensora.registry import SCHEDULERS
236
-
237
- scheduler = build_module(config.scheduler, SCHEDULERS)
238
-
239
- # hack for classifier-free guidance
240
- text_encoder.y_embedder = stdit.y_embedder
241
-
242
- # move modelst to device
243
- vae = vae.to(torch.bfloat16).eval()
244
- text_encoder.t5.model = text_encoder.t5.model.eval() # t5 must be in fp32
245
- stdit = stdit.to(torch.bfloat16).eval()
246
-
247
- # clear cuda
248
- torch.cuda.empty_cache()
249
- return vae, text_encoder, stdit, scheduler
250
-
251
-
252
- def parse_args():
253
- parser = argparse.ArgumentParser()
254
- parser.add_argument(
255
- "--model-type",
256
- default="v1.1-stage3",
257
- choices=MODEL_TYPES,
258
- help=f"The type of model to run for the Gradio App, can only be {MODEL_TYPES}",
259
- )
260
- parser.add_argument("--output", default="./outputs", type=str, help="The path to the output folder")
261
- parser.add_argument("--port", default=None, type=int, help="The port to run the Gradio App on.")
262
- parser.add_argument("--host", default=None, type=str, help="The host to run the Gradio App on.")
263
- parser.add_argument("--share", action="store_true", help="Whether to share this gradio demo.")
264
- parser.add_argument(
265
- "--enable-optimization",
266
- action="store_true",
267
- help="Whether to enable optimization such as flash attention and fused layernorm",
268
- )
269
- return parser.parse_args()
270
-
271
-
272
- # ============================
273
- # Main Gradio Script
274
- # ============================
275
- # as `run_inference` needs to be wrapped by `spaces.GPU` and the input can only be the prompt text
276
- # so we can't pass the models to `run_inference` as arguments.
277
- # instead, we need to define them globally so that we can access these models inside `run_inference`
278
-
279
- # read config
280
- args = parse_args()
281
- config = read_config(CONFIG_MAP[args.model_type])
282
-
283
- # make outputs dir
284
- os.makedirs(args.output, exist_ok=True)
285
-
286
- # disable torch jit as it can cause failure in gradio SDK
287
- # gradio sdk uses torch with cuda 11.3
288
- torch.jit._state.disable()
289
-
290
- # set up
291
- install_dependencies(enable_optimization=args.enable_optimization)
292
-
293
- # import after installation
294
- from opensora.datasets import IMG_FPS, save_sample
295
- from opensora.utils.misc import to_torch_dtype
296
-
297
- # some global variables
298
- dtype = to_torch_dtype(config.dtype)
299
- device = torch.device("cuda")
300
-
301
- # build model
302
- vae, text_encoder, stdit, scheduler = build_models(args.model_type, config, enable_optimization=args.enable_optimization)
303
-
304
-
305
- @spaces.GPU(duration=200)
306
- def run_inference(mode, prompt_text, resolution, length, reference_image):
307
- with torch.inference_mode():
308
- # ======================
309
- # 1. Preparation
310
- # ======================
311
- # parse the inputs
312
- resolution = RESOLUTION_MAP[resolution]
313
-
314
- # compute number of loops
315
- num_seconds = int(length.rstrip('s'))
316
- total_number_of_frames = num_seconds * config.fps / config.frame_interval
317
- num_loop = math.ceil(total_number_of_frames / config.num_frames)
318
-
319
- # prepare model args
320
- model_args = dict()
321
- height = torch.tensor([resolution[0]], device=device, dtype=dtype)
322
- width = torch.tensor([resolution[1]], device=device, dtype=dtype)
323
- num_frames = torch.tensor([config.num_frames], device=device, dtype=dtype)
324
- ar = torch.tensor([resolution[0] / resolution[1]], device=device, dtype=dtype)
325
- if config.num_frames == 1:
326
- config.fps = IMG_FPS
327
- fps = torch.tensor([config.fps], device=device, dtype=dtype)
328
- model_args["height"] = height
329
- model_args["width"] = width
330
- model_args["num_frames"] = num_frames
331
- model_args["ar"] = ar
332
- model_args["fps"] = fps
333
-
334
- # compute latent size
335
- input_size = (config.num_frames, *resolution)
336
- latent_size = vae.get_latent_size(input_size)
337
-
338
- # process prompt
339
- prompt_raw = [prompt_text]
340
- prompt_raw, _ = extract_json_from_prompts(prompt_raw)
341
- prompt_loops = process_prompts(prompt_raw, num_loop)
342
- video_clips = []
343
-
344
- # prepare mask strategy
345
- if mode == "Text2Video":
346
- mask_strategy = [None]
347
- elif mode == "Image2Video":
348
- mask_strategy = ['0']
349
- else:
350
- raise ValueError(f"Invalid mode: {mode}")
351
-
352
- # =========================
353
- # 2. Load reference images
354
- # =========================
355
- if mode == "Text2Video":
356
- refs_x = collect_references_batch([None], vae, resolution)
357
- elif mode == "Image2Video":
358
- # save image to disk
359
- from PIL import Image
360
- im = Image.fromarray(reference_image)
361
- im.save("test.jpg")
362
- refs_x = collect_references_batch(["test.jpg"], vae, resolution)
363
- else:
364
- raise ValueError(f"Invalid mode: {mode}")
365
-
366
- # 4.3. long video generation
367
- for loop_i in range(num_loop):
368
- # 4.4 sample in hidden space
369
- batch_prompts = [prompt[loop_i] for prompt in prompt_loops]
370
- z = torch.randn(len(batch_prompts), vae.out_channels, *latent_size, device=device, dtype=dtype)
371
-
372
- # 4.5. apply mask strategy
373
- masks = None
374
-
375
- # if cfg.reference_path is not None:
376
- if loop_i > 0:
377
- ref_x = vae.encode(video_clips[-1])
378
- for j, refs in enumerate(refs_x):
379
- if refs is None:
380
- refs_x[j] = [ref_x[j]]
381
- else:
382
- refs.append(ref_x[j])
383
- if mask_strategy[j] is None:
384
- mask_strategy[j] = ""
385
- else:
386
- mask_strategy[j] += ";"
387
- mask_strategy[
388
- j
389
- ] += f"{loop_i},{len(refs)-1},-{config.condition_frame_length},0,{config.condition_frame_length}"
390
-
391
- masks = apply_mask_strategy(z, refs_x, mask_strategy, loop_i)
392
-
393
- # 4.6. diffusion sampling
394
- samples = scheduler.sample(
395
- stdit,
396
- text_encoder,
397
- z=z,
398
- prompts=batch_prompts,
399
- device=device,
400
- additional_args=model_args,
401
- mask=masks, # scheduler must support mask
402
- )
403
- samples = vae.decode(samples.to(dtype))
404
- video_clips.append(samples)
405
-
406
- # 4.7. save video
407
- if loop_i == num_loop - 1:
408
- video_clips_list = [
409
- video_clips[0][0]] + [video_clips[i][0][:, config.condition_frame_length :]
410
- for i in range(1, num_loop)
411
- ]
412
- video = torch.cat(video_clips_list, dim=1)
413
- save_path = f"{args.output}/sample"
414
- saved_path = save_sample(video, fps=config.fps // config.frame_interval, save_path=save_path, force_video=True)
415
- return saved_path
416
-
417
-
418
- def main():
419
- # create demo
420
- with gr.Blocks() as demo:
421
- with gr.Row():
422
- with gr.Column():
423
- gr.HTML(
424
- """
425
- <div style='text-align: center;'>
426
- <p align="center">
427
- <img src="https://github.com/hpcaitech/Open-Sora/raw/main/assets/readme/icon.png" width="250"/>
428
- </p>
429
- <div style="display: flex; gap: 10px; justify-content: center;">
430
- <a href="https://github.com/hpcaitech/Open-Sora/stargazers"><img src="https://img.shields.io/github/stars/hpcaitech/Open-Sora?style=social"></a>
431
- <a href="https://hpcaitech.github.io/Open-Sora/"><img src="https://img.shields.io/badge/Gallery-View-orange?logo=&amp"></a>
432
- <a href="https://discord.gg/kZakZzrSUT"><img src="https://img.shields.io/badge/Discord-join-blueviolet?logo=discord&amp"></a>
433
- <a href="https://join.slack.com/t/colossalaiworkspace/shared_invite/zt-247ipg9fk-KRRYmUl~u2ll2637WRURVA"><img src="https://img.shields.io/badge/Slack-ColossalAI-blueviolet?logo=slack&amp"></a>
434
- <a href="https://twitter.com/yangyou1991/status/1769411544083996787?s=61&t=jT0Dsx2d-MS5vS9rNM5e5g"><img src="https://img.shields.io/badge/Twitter-Discuss-blue?logo=twitter&amp"></a>
435
- <a href="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/WeChat.png"><img src="https://img.shields.io/badge/微信-小助手加群-green?logo=wechat&amp"></a>
436
- <a href="https://hpc-ai.com/blog/open-sora-v1.0"><img src="https://img.shields.io/badge/Open_Sora-Blog-blue"></a>
437
- </div>
438
- <h1 style='margin-top: 5px;'>Open-Sora: Democratizing Efficient Video Production for All</h1>
439
- </div>
440
- """
441
- )
442
-
443
- with gr.Row():
444
- with gr.Column():
445
- mode = gr.Radio(
446
- choices=["Text2Video", "Image2Video"],
447
- value="Text2Video",
448
- label="Usage",
449
- info="Choose your usage scenario",
450
- )
451
- prompt_text = gr.Textbox(
452
- label="Prompt",
453
- placeholder="Describe your video here",
454
- lines=4,
455
- )
456
- resolution = gr.Radio(
457
- choices=["144p", "240p", "360p", "480p", "720p", "1080p"],
458
- value="144p",
459
- label="Resolution",
460
- )
461
- length = gr.Radio(
462
- choices=["2s", "4s", "8s"],
463
- value="2s",
464
- label="Video Length",
465
- info="8s may fail as Hugging Face ZeroGPU has the limitation of max 200 seconds inference time."
466
- )
467
-
468
- reference_image = gr.Image(
469
- label="Reference Image (only used for Image2Video)",
470
- )
471
-
472
- with gr.Column():
473
- output_video = gr.Video(
474
- label="Output Video",
475
- height="100%"
476
- )
477
-
478
- with gr.Row():
479
- submit_button = gr.Button("Generate video")
480
-
481
-
482
- submit_button.click(
483
- fn=run_inference,
484
- inputs=[mode, prompt_text, resolution, length, reference_image],
485
- outputs=output_video
486
- )
487
-
488
- # launch
489
- demo.launch(server_port=args.port, server_name=args.host, share=args.share)
490
-
491
-
492
- if __name__ == "__main__":
493
- main()
 
 
1
+ #!/usr/bin/env python
2
+ """
3
+ This script runs a Gradio App for the Open-Sora model.
4
+
5
+ Usage:
6
+ python demo.py <config-path>
7
+ """
8
+
9
+ import argparse
10
+ import importlib
11
+ import os
12
+ import subprocess
13
+ import sys
14
+ import re
15
+ import json
16
+ import math
17
+
18
+ import spaces
19
+ import torch
20
+
21
+ import gradio as gr
22
+
23
+
24
+ MODEL_TYPES = ["v1.1"]
25
+ CONFIG_MAP = {
26
+ "v1.1-stage2": "configs/opensora-v1-1/inference/sample-ref.py",
27
+ "v1.1-stage3": "configs/opensora-v1-1/inference/sample-ref.py",
28
+ }
29
+ HF_STDIT_MAP = {
30
+ "v1.1-stage2": "hpcai-tech/OpenSora-STDiT-v2-stage2",
31
+ "v1.1-stage3": "hpcai-tech/OpenSora-STDiT-v2-stage3",
32
+ }
33
+ RESOLUTION_MAP = {
34
+ "144p": (256, 144),
35
+ "240p": (426, 240),
36
+ "360p": (480, 360),
37
+ "480p": (858, 480),
38
+ "720p": (1280, 720),
39
+ "1080p": (1920, 1080)
40
+ }
41
+
42
+
43
+ # ============================
44
+ # Utils
45
+ # ============================
46
+ def collect_references_batch(reference_paths, vae, image_size):
47
+ from opensora.datasets.utils import read_from_path
48
+
49
+ refs_x = []
50
+ for reference_path in reference_paths:
51
+ if reference_path is None:
52
+ refs_x.append([])
53
+ continue
54
+ ref_path = reference_path.split(";")
55
+ ref = []
56
+ for r_path in ref_path:
57
+ r = read_from_path(r_path, image_size, transform_name="resize_crop")
58
+ r_x = vae.encode(r.unsqueeze(0).to(vae.device, vae.dtype))
59
+ r_x = r_x.squeeze(0)
60
+ ref.append(r_x)
61
+ refs_x.append(ref)
62
+ # refs_x: [batch, ref_num, C, T, H, W]
63
+ return refs_x
64
+
65
+
66
+ def process_mask_strategy(mask_strategy):
67
+ mask_batch = []
68
+ mask_strategy = mask_strategy.split(";")
69
+ for mask in mask_strategy:
70
+ mask_group = mask.split(",")
71
+ assert len(mask_group) >= 1 and len(mask_group) <= 6, f"Invalid mask strategy: {mask}"
72
+ if len(mask_group) == 1:
73
+ mask_group.extend(["0", "0", "0", "1", "0"])
74
+ elif len(mask_group) == 2:
75
+ mask_group.extend(["0", "0", "1", "0"])
76
+ elif len(mask_group) == 3:
77
+ mask_group.extend(["0", "1", "0"])
78
+ elif len(mask_group) == 4:
79
+ mask_group.extend(["1", "0"])
80
+ elif len(mask_group) == 5:
81
+ mask_group.append("0")
82
+ mask_batch.append(mask_group)
83
+ return mask_batch
84
+
85
+
86
+ def apply_mask_strategy(z, refs_x, mask_strategys, loop_i):
87
+ masks = []
88
+ for i, mask_strategy in enumerate(mask_strategys):
89
+ mask = torch.ones(z.shape[2], dtype=torch.float, device=z.device)
90
+ if mask_strategy is None:
91
+ masks.append(mask)
92
+ continue
93
+ mask_strategy = process_mask_strategy(mask_strategy)
94
+ for mst in mask_strategy:
95
+ loop_id, m_id, m_ref_start, m_target_start, m_length, edit_ratio = mst
96
+ loop_id = int(loop_id)
97
+ if loop_id != loop_i:
98
+ continue
99
+ m_id = int(m_id)
100
+ m_ref_start = int(m_ref_start)
101
+ m_length = int(m_length)
102
+ m_target_start = int(m_target_start)
103
+ edit_ratio = float(edit_ratio)
104
+ ref = refs_x[i][m_id] # [C, T, H, W]
105
+ if m_ref_start < 0:
106
+ m_ref_start = ref.shape[1] + m_ref_start
107
+ if m_target_start < 0:
108
+ # z: [B, C, T, H, W]
109
+ m_target_start = z.shape[2] + m_target_start
110
+ z[i, :, m_target_start : m_target_start + m_length] = ref[:, m_ref_start : m_ref_start + m_length]
111
+ mask[m_target_start : m_target_start + m_length] = edit_ratio
112
+ masks.append(mask)
113
+ masks = torch.stack(masks)
114
+ return masks
115
+
116
+
117
+ def process_prompts(prompts, num_loop):
118
+ from opensora.models.text_encoder.t5 import text_preprocessing
119
+
120
+ ret_prompts = []
121
+ for prompt in prompts:
122
+ if prompt.startswith("|0|"):
123
+ prompt_list = prompt.split("|")[1:]
124
+ text_list = []
125
+ for i in range(0, len(prompt_list), 2):
126
+ start_loop = int(prompt_list[i])
127
+ text = prompt_list[i + 1]
128
+ text = text_preprocessing(text)
129
+ end_loop = int(prompt_list[i + 2]) if i + 2 < len(prompt_list) else num_loop
130
+ text_list.extend([text] * (end_loop - start_loop))
131
+ assert len(text_list) == num_loop, f"Prompt loop mismatch: {len(text_list)} != {num_loop}"
132
+ ret_prompts.append(text_list)
133
+ else:
134
+ prompt = text_preprocessing(prompt)
135
+ ret_prompts.append([prompt] * num_loop)
136
+ return ret_prompts
137
+
138
+
139
+ def extract_json_from_prompts(prompts):
140
+ additional_infos = []
141
+ ret_prompts = []
142
+ for prompt in prompts:
143
+ parts = re.split(r"(?=[{\[])", prompt)
144
+ assert len(parts) <= 2, f"Invalid prompt: {prompt}"
145
+ ret_prompts.append(parts[0])
146
+ if len(parts) == 1:
147
+ additional_infos.append({})
148
+ else:
149
+ additional_infos.append(json.loads(parts[1]))
150
+ return ret_prompts, additional_infos
151
+
152
+
153
+ # ============================
154
+ # Runtime Environment
155
+ # ============================
156
+ def install_dependencies(enable_optimization=False):
157
+ """
158
+ Install the required dependencies for the demo if they are not already installed.
159
+ """
160
+
161
+ def _is_package_available(name) -> bool:
162
+ try:
163
+ importlib.import_module(name)
164
+ return True
165
+ except (ImportError, ModuleNotFoundError):
166
+ return False
167
+
168
+ # flash attention is needed no matter optimization is enabled or not
169
+ # because Hugging Face transformers detects flash_attn is a dependency in STDiT
170
+ # thus, we need to install it no matter what
171
+ if not _is_package_available("flash_attn"):
172
+ subprocess.run(
173
+ f"{sys.executable} -m pip install flash-attn --no-build-isolation",
174
+ env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
175
+ shell=True,
176
+ )
177
+
178
+ if enable_optimization:
179
+ # install apex for fused layernorm
180
+ if not _is_package_available("apex"):
181
+ subprocess.run(
182
+ f'{sys.executable} -m pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --config-settings "--build-option=--cpp_ext" --config-settings "--build-option=--cuda_ext" git+https://github.com/NVIDIA/apex.git',
183
+ shell=True,
184
+ )
185
+
186
+ # install ninja
187
+ if not _is_package_available("ninja"):
188
+ subprocess.run(f"{sys.executable} -m pip install ninja", shell=True)
189
+
190
+ # install xformers
191
+ if not _is_package_available("xformers"):
192
+ subprocess.run(
193
+ f"{sys.executable} -m pip install -v -U git+https://github.com/facebookresearch/xformers.git@main#egg=xformers",
194
+ shell=True,
195
+ )
196
+
197
+
198
+ # ============================
199
+ # Model-related
200
+ # ============================
201
+ def read_config(config_path):
202
+ """
203
+ Read the configuration file.
204
+ """
205
+ from mmengine.config import Config
206
+
207
+ return Config.fromfile(config_path)
208
+
209
+
210
+ def build_models(model_type, config, enable_optimization=False):
211
+ """
212
+ Build the models for the given model type and configuration.
213
+ """
214
+ # build vae
215
+ from opensora.registry import MODELS, build_module
216
+
217
+ vae = build_module(config.vae, MODELS).cuda()
218
+
219
+ # build text encoder
220
+ text_encoder = build_module(config.text_encoder, MODELS) # T5 must be fp32
221
+ text_encoder.t5.model = text_encoder.t5.model.cuda()
222
+
223
+ # build stdit
224
+ # we load model from HuggingFace directly so that we don't need to
225
+ # handle model download logic in HuggingFace Space
226
+ from transformers import AutoModelForSeq2SeqLM
227
+
228
+ stdit = AutoModelForSeq2SeqLM.from_pretrained(
229
+ HF_STDIT_MAP[model_type],
230
+ enable_flash_attn=enable_optimization,
231
+ trust_remote_code=True,
232
+ device_map="auto",
233
+ ).cuda()
234
+
235
+ # build scheduler
236
+ from opensora.registry import SCHEDULERS
237
+
238
+ scheduler = build_module(config.scheduler, SCHEDULERS)
239
+
240
+ # hack for classifier-free guidance
241
+ text_encoder.y_embedder = stdit.y_embedder
242
+
243
+ # move modelst to device
244
+ vae = vae.to(torch.bfloat16).eval()
245
+ text_encoder.t5.model = text_encoder.t5.model.eval() # t5 must be in fp32
246
+ stdit = stdit.to(torch.bfloat16).eval()
247
+
248
+ # clear cuda
249
+ torch.cuda.empty_cache()
250
+ return vae, text_encoder, stdit, scheduler
251
+
252
+
253
+ def parse_args():
254
+ parser = argparse.ArgumentParser()
255
+ parser.add_argument(
256
+ "--model-type",
257
+ default="v1.1-stage3",
258
+ choices=MODEL_TYPES,
259
+ help=f"The type of model to run for the Gradio App, can only be {MODEL_TYPES}",
260
+ )
261
+ parser.add_argument("--output", default="./outputs", type=str, help="The path to the output folder")
262
+ parser.add_argument("--port", default=None, type=int, help="The port to run the Gradio App on.")
263
+ parser.add_argument("--host", default=None, type=str, help="The host to run the Gradio App on.")
264
+ parser.add_argument("--share", action="store_true", help="Whether to share this gradio demo.")
265
+ parser.add_argument(
266
+ "--enable-optimization",
267
+ action="store_true",
268
+ help="Whether to enable optimization such as flash attention and fused layernorm",
269
+ )
270
+ return parser.parse_args()
271
+
272
+
273
+ # ============================
274
+ # Main Gradio Script
275
+ # ============================
276
+ # as `run_inference` needs to be wrapped by `spaces.GPU` and the input can only be the prompt text
277
+ # so we can't pass the models to `run_inference` as arguments.
278
+ # instead, we need to define them globally so that we can access these models inside `run_inference`
279
+
280
+ # read config
281
+ args = parse_args()
282
+ config = read_config(CONFIG_MAP[args.model_type])
283
+
284
+ # make outputs dir
285
+ os.makedirs(args.output, exist_ok=True)
286
+
287
+ # disable torch jit as it can cause failure in gradio SDK
288
+ # gradio sdk uses torch with cuda 11.3
289
+ torch.jit._state.disable()
290
+
291
+ # set up
292
+ install_dependencies(enable_optimization=args.enable_optimization)
293
+
294
+ # import after installation
295
+ from opensora.datasets import IMG_FPS, save_sample
296
+ from opensora.utils.misc import to_torch_dtype
297
+
298
+ # some global variables
299
+ dtype = to_torch_dtype(config.dtype)
300
+ device = torch.device("cuda")
301
+
302
+ # build model
303
+ vae, text_encoder, stdit, scheduler = build_models(args.model_type, config, enable_optimization=args.enable_optimization)
304
+
305
+
306
+ @spaces.GPU(duration=200)
307
+ def run_inference(mode, prompt_text, resolution, length, reference_image):
308
+ with torch.inference_mode():
309
+ # ======================
310
+ # 1. Preparation
311
+ # ======================
312
+ # parse the inputs
313
+ resolution = RESOLUTION_MAP[resolution]
314
+
315
+ # compute number of loops
316
+ num_seconds = int(length.rstrip('s'))
317
+ total_number_of_frames = num_seconds * config.fps / config.frame_interval
318
+ num_loop = math.ceil(total_number_of_frames / config.num_frames)
319
+
320
+ # prepare model args
321
+ model_args = dict()
322
+ height = torch.tensor([resolution[0]], device=device, dtype=dtype)
323
+ width = torch.tensor([resolution[1]], device=device, dtype=dtype)
324
+ num_frames = torch.tensor([config.num_frames], device=device, dtype=dtype)
325
+ ar = torch.tensor([resolution[0] / resolution[1]], device=device, dtype=dtype)
326
+ if config.num_frames == 1:
327
+ config.fps = IMG_FPS
328
+ fps = torch.tensor([config.fps], device=device, dtype=dtype)
329
+ model_args["height"] = height
330
+ model_args["width"] = width
331
+ model_args["num_frames"] = num_frames
332
+ model_args["ar"] = ar
333
+ model_args["fps"] = fps
334
+
335
+ # compute latent size
336
+ input_size = (config.num_frames, *resolution)
337
+ latent_size = vae.get_latent_size(input_size)
338
+
339
+ # process prompt
340
+ prompt_raw = [prompt_text]
341
+ prompt_raw, _ = extract_json_from_prompts(prompt_raw)
342
+ prompt_loops = process_prompts(prompt_raw, num_loop)
343
+ video_clips = []
344
+
345
+ # prepare mask strategy
346
+ if mode == "Text2Video":
347
+ mask_strategy = [None]
348
+ elif mode == "Image2Video":
349
+ mask_strategy = ['0']
350
+ else:
351
+ raise ValueError(f"Invalid mode: {mode}")
352
+
353
+ # =========================
354
+ # 2. Load reference images
355
+ # =========================
356
+ if mode == "Text2Video":
357
+ refs_x = collect_references_batch([None], vae, resolution)
358
+ elif mode == "Image2Video":
359
+ # save image to disk
360
+ from PIL import Image
361
+ im = Image.fromarray(reference_image)
362
+ im.save("test.jpg")
363
+ refs_x = collect_references_batch(["test.jpg"], vae, resolution)
364
+ else:
365
+ raise ValueError(f"Invalid mode: {mode}")
366
+
367
+ # 4.3. long video generation
368
+ for loop_i in range(num_loop):
369
+ # 4.4 sample in hidden space
370
+ batch_prompts = [prompt[loop_i] for prompt in prompt_loops]
371
+ z = torch.randn(len(batch_prompts), vae.out_channels, *latent_size, device=device, dtype=dtype)
372
+
373
+ # 4.5. apply mask strategy
374
+ masks = None
375
+
376
+ # if cfg.reference_path is not None:
377
+ if loop_i > 0:
378
+ ref_x = vae.encode(video_clips[-1])
379
+ for j, refs in enumerate(refs_x):
380
+ if refs is None:
381
+ refs_x[j] = [ref_x[j]]
382
+ else:
383
+ refs.append(ref_x[j])
384
+ if mask_strategy[j] is None:
385
+ mask_strategy[j] = ""
386
+ else:
387
+ mask_strategy[j] += ";"
388
+ mask_strategy[
389
+ j
390
+ ] += f"{loop_i},{len(refs)-1},-{config.condition_frame_length},0,{config.condition_frame_length}"
391
+
392
+ masks = apply_mask_strategy(z, refs_x, mask_strategy, loop_i)
393
+
394
+ # 4.6. diffusion sampling
395
+ samples = scheduler.sample(
396
+ stdit,
397
+ text_encoder,
398
+ z=z,
399
+ prompts=batch_prompts,
400
+ device=device,
401
+ additional_args=model_args,
402
+ mask=masks, # scheduler must support mask
403
+ )
404
+ samples = vae.decode(samples.to(dtype))
405
+ video_clips.append(samples)
406
+
407
+ # 4.7. save video
408
+ if loop_i == num_loop - 1:
409
+ video_clips_list = [
410
+ video_clips[0][0]] + [video_clips[i][0][:, config.condition_frame_length :]
411
+ for i in range(1, num_loop)
412
+ ]
413
+ video = torch.cat(video_clips_list, dim=1)
414
+ save_path = f"{args.output}/sample"
415
+ saved_path = save_sample(video, fps=config.fps // config.frame_interval, save_path=save_path, force_video=True)
416
+ return saved_path
417
+
418
+
419
+ def main():
420
+ # create demo
421
+ with gr.Blocks() as demo:
422
+ with gr.Row():
423
+ with gr.Column():
424
+ gr.HTML(
425
+ """
426
+ <div style='text-align: center;'>
427
+ <p align="center">
428
+ <img src="https://github.com/hpcaitech/Open-Sora/raw/main/assets/readme/icon.png" width="250"/>
429
+ </p>
430
+ <div style="display: flex; gap: 10px; justify-content: center;">
431
+ <a href="https://github.com/hpcaitech/Open-Sora/stargazers"><img src="https://img.shields.io/github/stars/hpcaitech/Open-Sora?style=social"></a>
432
+ <a href="https://hpcaitech.github.io/Open-Sora/"><img src="https://img.shields.io/badge/Gallery-View-orange?logo=&amp"></a>
433
+ <a href="https://discord.gg/kZakZzrSUT"><img src="https://img.shields.io/badge/Discord-join-blueviolet?logo=discord&amp"></a>
434
+ <a href="https://join.slack.com/t/colossalaiworkspace/shared_invite/zt-247ipg9fk-KRRYmUl~u2ll2637WRURVA"><img src="https://img.shields.io/badge/Slack-ColossalAI-blueviolet?logo=slack&amp"></a>
435
+ <a href="https://twitter.com/yangyou1991/status/1769411544083996787?s=61&t=jT0Dsx2d-MS5vS9rNM5e5g"><img src="https://img.shields.io/badge/Twitter-Discuss-blue?logo=twitter&amp"></a>
436
+ <a href="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/WeChat.png"><img src="https://img.shields.io/badge/微信-小助手加群-green?logo=wechat&amp"></a>
437
+ <a href="https://hpc-ai.com/blog/open-sora-v1.0"><img src="https://img.shields.io/badge/Open_Sora-Blog-blue"></a>
438
+ </div>
439
+ <h1 style='margin-top: 5px;'>Open-Sora: Democratizing Efficient Video Production for All</h1>
440
+ </div>
441
+ """
442
+ )
443
+
444
+ with gr.Row():
445
+ with gr.Column():
446
+ mode = gr.Radio(
447
+ choices=["Text2Video", "Image2Video"],
448
+ value="Text2Video",
449
+ label="Usage",
450
+ info="Choose your usage scenario",
451
+ )
452
+ prompt_text = gr.Textbox(
453
+ label="Prompt",
454
+ placeholder="Describe your video here",
455
+ lines=4,
456
+ )
457
+ resolution = gr.Radio(
458
+ choices=["144p", "240p", "360p", "480p", "720p", "1080p"],
459
+ value="144p",
460
+ label="Resolution",
461
+ )
462
+ length = gr.Radio(
463
+ choices=["2s", "4s", "8s"],
464
+ value="2s",
465
+ label="Video Length",
466
+ info="8s may fail as Hugging Face ZeroGPU has the limitation of max 200 seconds inference time."
467
+ )
468
+
469
+ reference_image = gr.Image(
470
+ label="Reference Image (only used for Image2Video)",
471
+ )
472
+
473
+ with gr.Column():
474
+ output_video = gr.Video(
475
+ label="Output Video",
476
+ height="100%"
477
+ )
478
+
479
+ with gr.Row():
480
+ submit_button = gr.Button("Generate video")
481
+
482
+
483
+ submit_button.click(
484
+ fn=run_inference,
485
+ inputs=[mode, prompt_text, resolution, length, reference_image],
486
+ outputs=output_video
487
+ )
488
+
489
+ # launch
490
+ demo.launch(server_port=args.port, server_name=args.host, share=args.share)
491
+
492
+
493
+ if __name__ == "__main__":
494
+ main()